	~~~		- Fa
2	V1 0	_	Pepert No : DACE240412007PL 001
L			Report No.: DACE240412007RL001
	DAC	וכ	F TEST REPORT
			FIESTREPURI
			For
			CHNOLOGY (SHENZHEN) CO., LTD
	🖓 🗠 Pro	dι	ct Name: Wireless Earphone
			Test Model(s).: BX35
C			
			. 6
	Report Reference No.	:	DACE240412007RL001
	FCC ID	:	2ATU8-X35
	1C		
0	Applicant's Name	:	BESING TECHNOLOGY (SHENZHEN) CO., LTD
	Address	:	2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Baoan District, Shenzhen, China
	Testing Laboratory	:	Shenzhen DACE Testing Technology Co., Ltd.
	Address	:	102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
	Test Specification Standard	:	47 CFR Part 15.247
	Date of Receipt	:	April 12, 2024
	Date of Test	:	April 12, 2024 to April 17, 2024
C	Data of Issue	:	April 17, 2024
	Result	ì	Pass
	Testing Technology Co., Ltd. Thi	is d	duced except in full, without the written approval of Shenzhen DACE ocument may be altered or revised by Shenzhen DACE Testing Technology
	Co., Ltd. personnel only, and sh report only apply to the tested sa		be noted in the revision section of the document. The test results in the ble

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Report No.: DACE240412007RL001

Ce.

## **Revision History Of Report**

Version	Description	REPORT No.	Issue Date
V1.0	Original	DACE240412007RL001	April 17, 2024
	- 26	6	
		OF C	

#### NOTE1:

)DE

DA

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

NE

Compiled by: Ben Tang

Ben Tang /Test Engineer

Tom Chen Tom Chen / Project Engineer

e

)De

AC

)AC

Supervised by:

Approved by: Machael ANJ

Machael Mo / Manager

-

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 2 of 85

NE

١

# CONTENTS

V1.0	V	Report No.: DACE240412007RL
	CONTEN	те
	CONTEN	
V		
2.5 EQUIPMENTS USED D	OURING THE TEST	
EVALUATION RESULTS (E	VALUATION)	
RADIO SPECTRUM MATTE	ER TEST RESULTS (RF)	
4.1 CONDUCTED EMISSIC	ON AT AC POWER LINE	
4.1.1 E.U.T. Oper	ation:	C
4.1.2 Test Setup I	Diagram:	
		~
4.2.1 E.U.T. Oper	ation:	
4.2.2 Test Setup I	Diagram:	<u> </u>
•		
	0	
		<u> </u>
•	-	
4.5 NUMBER OF HOPPING	G FREQUENCIES	
4.5.2 Test Setup I	Diagram:	
4.6 DWELL TIME		
•		
	•	
•		

V	1	0

DΔC

DAG

3

DAG

DAE

)AC

Ŷ

DI

#### Report No.: DACE240412007RL001

DAG

DAG

)DE

4.8.2 Test Setup Diagram:	
4.8.3 Test Data:	
4.9 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHZ)	
4.9.1 E.U.T. Operation:	
4.9.2 Test Data:	
4.10 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHZ)	32
4.10.1 E.U.T. Operation:	
4.10.2 Test Data:	
5 TEST SETUP PHOTOS	35
6 PHOTOS OF THE EUT	
APPENDIX	
120DB BANDWIDTH	
2. 99% Occupied Bandwidth	
3. PEAK OUTPUT POWER	
4. SPURIOUS EMISSIONS	
5. Bandedge 6. Carrier Frequencies Separation (Hopping)	
7. NUMBER OF HOPPING CHANNEL (HOPPING)	
8. DWELL TIME (HOPPING)	
JE E	

)De

DAG

)DE

DAG

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Page 4 of 85 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

-

#### **TEST SUMMARY** 1

## 1.1 Test Standards

DAG

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

## 1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.7 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.215(c)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(1)	Pass
Channel Separation	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)	Pass
Number of Hopping Frequencies	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613

Page 5 of 85 E-mail: service@dace-lab.com

DAC	0	Report No.: DACE240412007RL001
2 <b>GENERAL IN</b> 2.1 Client Informatio		DRMATION
Applicant's Name	:	BESING TECHNOLOGY (SHENZHEN) CO., LTD
Address	:	2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Baoan District, Shenzhen, China
Manufacturer	:	BESING TECHNOLOGY (SHENZHEN) CO., LTD
Address	:	2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Baoan District, Shenzhen, China
2.2 Description of De		ce (EUT) Vireless Earphone

Wireless Earphone
BX35
N/A
N/A
DC 5V/1A from adapter Battery:DC3.7V 40mAH
2402MHz to 2480MHz
79
GFSK, π/4 DQPSK
Chip antenna
1.8dBi
V1.0
V1.0

(Remark: The Antenna Gain is supplied by the customer. DACE is not responsible for This data and the related calculations associated with it)

Operation Frequency each of channel									
Channel	Frequency	Channel	Frequency	Channel	Frequency				
1	2402MHz	21	2422MHz 🔍	41	2442MHz				
2	2403MHz	22	2423MHz	42	2443MHz				
3	2404MHz	23	2424MHz	43	2444MHz				
1	2405140-	24	2425140-	11					

-							
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz 🚽	71	2472MHz
12	2413MHz	32 💙	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Channel

61

Frequency

2462MHz

Report No.: DACE240412007RL001

16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

#### Note:

DAG

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
	BDR/EDR
Lowest channel	2402MHz
Middle channel	2441MHz
Highest channel	2480MHz

#### Description of Test Modes 2.3

No	Title	Description
TM1	TX-GFSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.
TM2	TX-Pi/4DQPSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with Pi/4DQPSK modulation.
ТМЗ	TX-GFSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.
TM4	TX-Pi/4DQPSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with Pi/4DQPSK modulation.

## 2.4 Description of Support Units

NE

Title	Manufacturer	Model No.	Serial No.
AC-DC adapter	HUAWEI TECHNOLOGY	HW100400C01	

2

C

)AC

## 2.5 Equipments Used During The Test

DVC

Conducted Emission	at AC power line	200			6
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
loop antenna	EVERFINE	LLA-2	80900L-C	2024-02-19	2025-02-18
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	1	2024-03-25	2025-03-24
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	1	16
Cable	SCHWARZ BECK	1	/	2024-03-20	2025-03-19
Pulse Limiter SCHWARZ BECK		VTSD 9561-F Pulse limiter 10dB Ateennator	561-G071	2023-12-12	2024-12-11
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	/
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2023-06-13	2024-06-12
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2024-12-11

**Number of Hopping Frequencies Dwell Time** Emissions in non-restricted frequency bands **Occupied Bandwidth** Maximum Conducted Output Power **Channel Separation** 

Equipment Manufacturer		Inventory No	Cal Date	Cal Due Date
TACHOY	RTS-01	V2.0.0.0	/	/
ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	/
MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	/	DAC
R&S	CMW500	113410	2023-06-13	2024-06-12
Keysight	N5181A	MY48180415	2023-11-09	2024-11-08
Keysight	N5182A	MY50143455	2023-11-09	2024-11-08
Keysight	N9020A	MY53420323	2023-12-12	2024-12-11
	TACHOY ZHINAN MIDEWEST Tachoy Information Technology(she nzhen) Co.,Ltd. R&S Keysight Keysight	TACHOYRTS-01ZHINANOQHPF1-M1.5- 18G-224MIDEWESTPWD-2533Tachoy Information Technology(she nzhen) Co.,Ltd.TR1029-2R&SCMW500KeysightN5181AKeysightN5182A	TACHOYRTS-01V2.0.0.0ZHINANOQHPF1-M1.5- 18G-2246210075MIDEWESTPWD-2533SMA-79Tachoy Information Technology(she nzhen) Co.,Ltd.TR1029-2000001R&SCMW500113410KeysightN5181AMY48180415KeysightN5182AMY50143455	TACHOY         RTS-01         V2.0.0.0         /           ZHINAN         OQHPF1-M1.5- 18G-224         6210075         /           MIDEWEST         PWD-2533         SMA-79         2023-05-11           Tachoy Information Technology(she nzhen) Co.,Ltd.         TR1029-2         000001         /           R&S         CMW500         113410         2023-06-13           Keysight         N5181A         MY48180415         2023-11-09           Keysight         N5182A         MY50143455         2023-11-09

.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Page 8 of 85

0

Report No.: DACE240412007RL001

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	/	/
Positioning Controller	<u> </u>	MF-7802	<u> </u>	1	1
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021-07-05	2024-07-04
Cable(LF)#2	Schwarzbeck	/		2024-02-19	2025-02-18
Cable(LF)#1	Schwarzbeck	/		2024-02-19	2025-02-18
Cable(HF)#2 Schwarzbeck		AK9515E	96250	2024-03-20	2025-03-19
Cable(HF)#1 Schwarzbeck		SYV-50-3-1	/	2024-03-20	2025-03-19
Power amplifier(LF) Schwarzbeck		BBV9743 9743-151		2023-06-13	2024-06-12
Power amplifier(HF) Schwarzbeck		BBV9718 9718-282		2023-06-13	2024-06-12
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2023-06-14	2024-06-13
Horn Antenna Sunol Sciences		DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna Sunol Sciences		JB6 Antenna	nna A090414 2023		2025-05-20
Test Receiver	R&S	ESCI	102109	2023-06-13	2024-06-12

)DE

DAG

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Page 9 of 85 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

)DE

)DE

V1.0

DAG

.

2

NE

## 2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty			
Occupied Bandwidth	±3.63%			
RF conducted power	±0.733dB			
Duty cycle	±3.1%			
Conducted Spurious emissions	±1.98dB			
Radiated Emission (Above 1GHz)	±5.46dB			
Radiated Emission (Below 1GHz)   ±5.79dB				
Note: (1) This uncertainty represents an expanded uncertain	inty expressed at approximately the 95%			

#### confidence level using a coverage factor of k=2.

## 2.7 Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
Identification of the Responsi	ble Testing Location
Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
FCC Registration Number:	0032847402
Designation Number:	CN1342
Test Firm Registration Number:	778666
A2LA Certificate Number:	6270.01

### 2.8 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

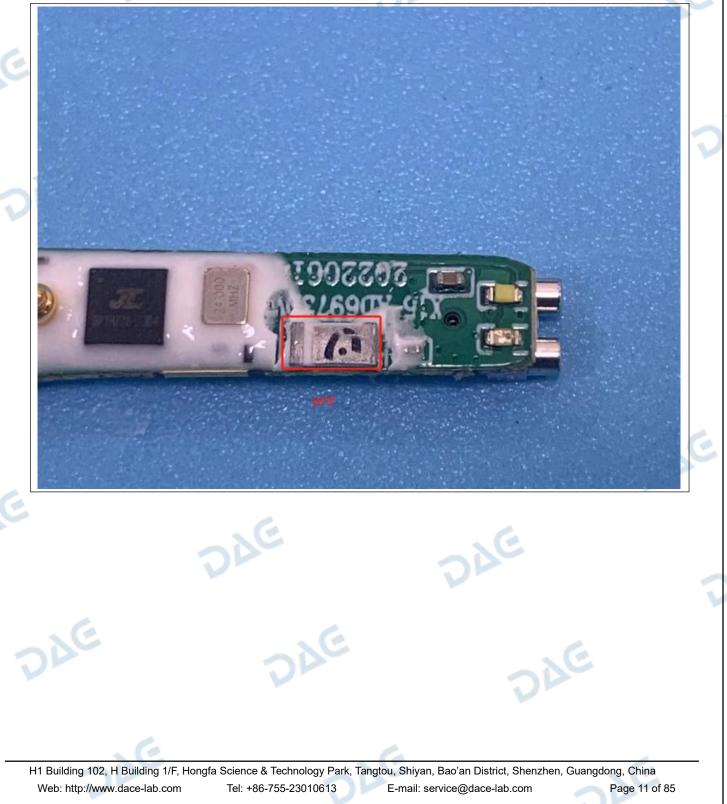
(4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 10 of 85

# 3 Evaluation Results (Evaluation)


## 3.1 Antenna requirement

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

#### 3.1.1 Conclusion:

Test Requirement:

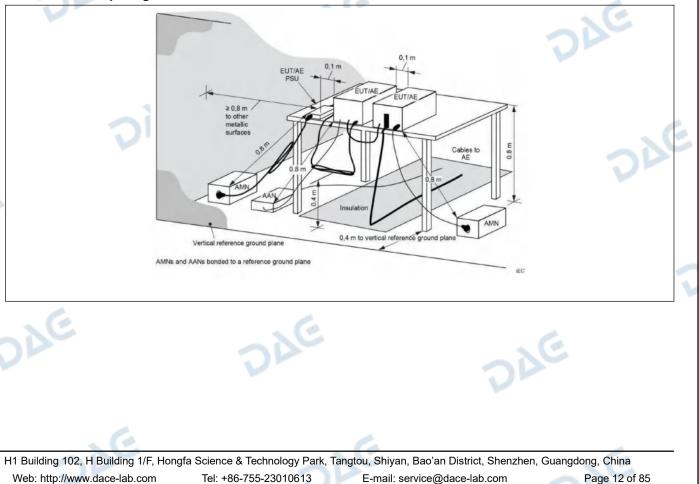
DVC

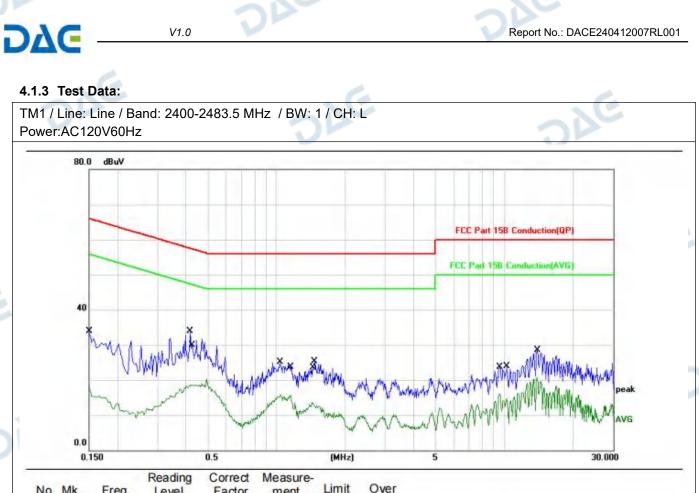


Report No.: DACE240412007RL001

# 4 Radio Spectrum Matter Test Results (RF)

## 4.1 Conducted Emission at AC power line


	-							
Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 $\mu$ H/50 ohms line impedance stabilization network (LISN).							
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)						
		Quasi-peak	Average					
	0.15-0.5 66 to 56* 56 to 46*							
	0.5-5	56 46						
	5-30 60 50							
	*Decreases with the logarithm of the frequency.							
Test Method:	ANSI C63.10-2013 section 6.2							
Procedure:	dure: Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices							


## 4.1.1 E.U.T. Operation:

DAG

Operating Environment:							
Temperature:	23.7 °C		Humidity:	51.4 %	Atmospheric Pressure:	102 kPa	
Pre test mode:		TM1			V		
Final test mode:		TM1					

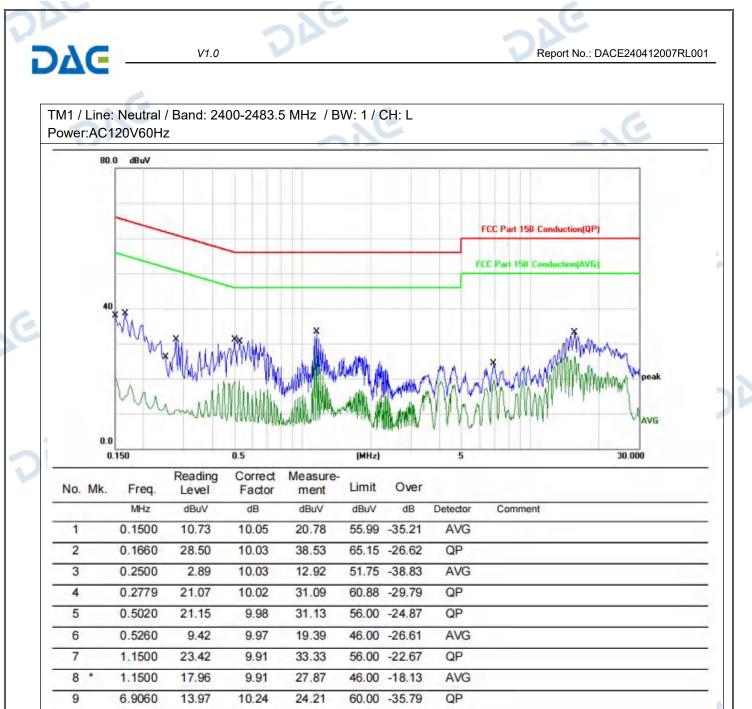
## 4.1.2 Test Setup Diagram:





No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1500	23.91	10.05	33.96	65.99	-32.03	QP		
2		0.1500	8.36	10.05	18.41	55.99	-37.58	AVG		
3	*	0.4180	23.82	9.99	33.81	57.49	-23.68	QP		
4		0.4300	8.59	9.99	18.58	47.25	-28.67	AVG		
5		1.0339	15.17	9.90	25.07	56.00	-30.93	QP		
6		1.1500	5.77	9.91	15.68	46.00	-30.32	AVG		
7		1.4260	3.69	9.93	13.62	46.00	-32.38	AVG		
8		1.4700	15.35	9.93	25.28	56.00	-30.72	QP		
9		9.5260	5.71	10.39	16.10	50.00	-33.90	AVG		
10		10.2380	13.52	10.42	23.94	60.00	-36.06	QP		
11		13.8780	10.20	10.44	20.64	50.00	-29.36	AVG		
12		13.9460	17.97	10.44	28.41	60.00	-31.59	QP		
_										

 H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China


 Web: http://www.dace-lab.com
 Tel: +86-755-23010613

 E-mail: service@dace-lab.com
 Page 13 of 85

)AC

)DE

DAG



1.An initial pre-scan was performed on the line and neutral lines with peak detector.

19.52

33.11

26.43

6.9060

15.6900

15.6900

10

11

12

NC.

9.28

22.65

15.97

10.24

10.46

10.46

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.3.Mesurement Level = Reading level + Correct Factor, Over=Limit- Mesurement

50.00 -30.48

60.00 -26.89

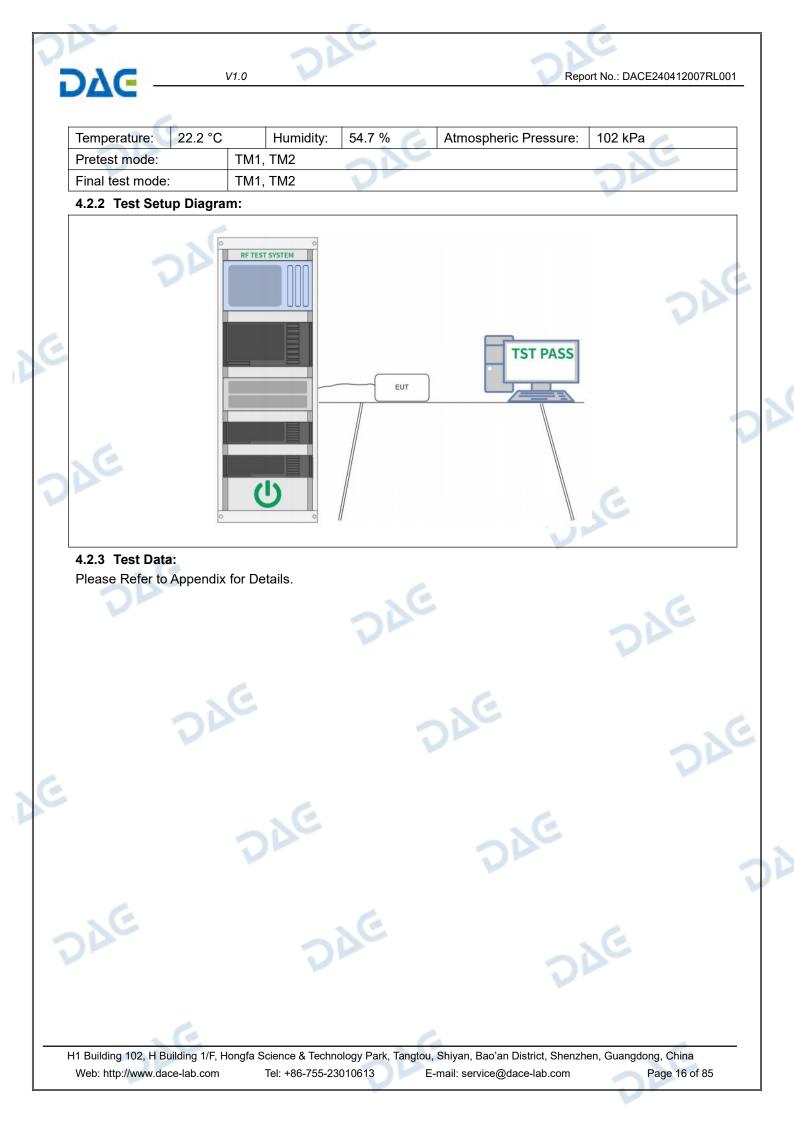
50.00 -23.57

AVG QP

AVG

)AC

)DC


H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 14 of 85

Report No.: DACE240412007RL001

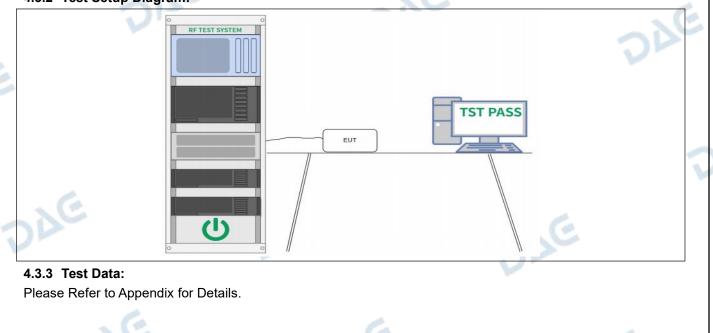
## 4.2 Occupied Bandwidth

DAG

provisions to the general emission limits, as contained in §§ 15.217 through 15.25 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidt of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequence band designated in the rule section under which the equipment is operated.Test Method:ANSI C63.10-2013, section 7.8.7, For occupied bandwidth measurements, use th procedure in 6.9.2. KDB 558074 D01 15.247 Meas Guidance v05r02	Test Requirement:	47 CFR 15.215(c)	
<ul> <li>procedure in 6.9.2.</li> <li>KDB 558074 D01 15.247 Meas Guidance v05r02</li> <li>Procedure: <ul> <li>a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.</li> <li>b) The nominal IF filter bandwidth (VBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement.</li> <li>c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peal of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.</li> <li>d) Steps a) through c) might require iteration to adjust within the specified tolerances.</li> <li>e) The dynamic range of the instrument at the selected RBW shall be more than 1 d B below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.</li> <li>f) Set detection mode to peak and trace mode to max hold.</li> <li>g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value; h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of th instrument.</li> <li>i) If the reference value is determined by an unmodulated carrier to sightly below the marker one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a m</li></ul></li></ul>	Test Limit:	provisions to the general emission limits, as contained in § and in subpart E of this part, must be designed to ensure th of the emission, or whatever bandwidth may otherwise be s rule section under which the equipment operates, is contain	§ 15.217 through 15.257 nat the 20 dB bandwidth specified in the specific ned within the frequency
<ul> <li>center frequency. The span range for the ÉMI receiver or spectrum analyzer shall be between two times and five times the OBW.</li> <li>b) The nominal IF fitter bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement.</li> <li>c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peal of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.</li> <li>d) Steps a) through c) might require iteration to adjust within the specified tolerances.</li> <li>e) The dynamic range of the instrument at the selected RBW shall be more than 14 B below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.</li> <li>f) Set detection mode to peak and trace mode to max hold.</li> <li>g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).</li> <li>h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of th instrument.</li> <li>i) If the reference value is determined by an unmodulated carrier, then turn the EL modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).</li> <li>j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is a to slightly</li></ul>	Test Method:	procedure in 6.9.2.	measurements, use the
<ul> <li>exceeding the maximum input mixer level for linear operation. In general, the peal of the spectral envelope shall be more than [10] (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.</li> <li>d) Steps a) through c) might require iteration to adjust within the specified tolerances.</li> <li>e) The dynamic range of the instrument at the selected RBW shall be more than 1 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.</li> <li>f) Set detection mode to peak and trace mode to max hold.</li> <li>g) Determine the reference value. Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).</li> <li>h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.</li> <li>i) If the reference value is determined by an unmodulated carrier, then turn the EU modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).</li> <li>j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" determined in step h). If a marker is below the "-xx dB down amplitude" determined in step h). If a marker is below the "-xx dB down amplitude" determined in step h). If a marker is below the "-xx dB down amplitude" determined in step h). If a marker is below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB</li></ul>	Procedure:	<ul> <li>center frequency. The span range for the EMI receiver or s be between two times and five times the OBW.</li> <li>b) The nominal IF filter bandwidth (3 dB RBW) shall be in the OBW and video bandwidth (VBW) shall be approximate unless otherwise specified by the applicable requirement.</li> </ul>	pectrum analyzer shall he range of 1% to 5% of ely three times RBW,
<ul> <li>dB below the target "xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.</li> <li>f) Set detection mode to peak and trace mode to max hold.</li> <li>g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).</li> <li>h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.</li> <li>i) If the reference value is determined by an unmodulated carrier, then turn the EL modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).</li> <li>j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency of the envelope of the spectral display, such that each marker is at down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency of the envelope of the spectral display, such that the marker as a slightly below the "-xx dB down amplitude" value, the number and the other signal, such that the marker at the lowest frequency of the envelope of the spectral display, such</li></ul>		exceeding the maximum input mixer level for linear operation of the spectral envelope shall be more than [10 log (OBW/F reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within tolerances.	on. In general, the peak RBW)] below the in the specified
<ul> <li>or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).</li> <li>h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.</li> <li>i) If the reference value is determined by an unmodulated carrier, then turn the EU modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).</li> <li>j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency of the envelope of the spectral display below the "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the deta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency readir at this point is the specified emission bandwidth.</li> <li>k) The occupied bandwidth shall be reported by providing plot(s) of the measuring at this point is the specified emission bandwidth.</li> </ul>		dB below the target "−xx dB down" requirement; that is, if the measuring the −20 dB OBW, the instrument noise floor at the be at least 30 dB below the reference value.	he requirement calls for he selected RBW shall
<ul> <li>instrument.</li> <li>i) If the reference value is determined by an unmodulated carrier, then turn the EU modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).</li> <li>j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency readin at this point is the specified emission bandwidth.</li> <li>k) The occupied bandwidth shall be reported by providing plot(s) of the measuring</li> </ul>		or modulated signal, as applicable. Allow the trace to stabil analyzer marker to the highest level of the displayed trace value). h) Determine the "-xx dB down amplitude" using [(reference	ize. Set the spectrum (this is the reference ce value) – xx].
<ul> <li>j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency readir at this point is the specified emission bandwidth.</li> <li>k) The occupied bandwidth shall be reported by providing plot(s) of the measuring</li> </ul>		<ul><li>instrument.</li><li>i) If the reference value is determined by an unmodulated or modulation ON, and either clear the existing trace or start a spectrum analyzer and allow the new trace to stabilize. Other</li></ul>	carrier, then turn the EUT a new trace on the
<ul> <li>amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency readir at this point is the specified emission bandwidth.</li> <li>k) The occupied bandwidth shall be reported by providing plot(s) of the measuring</li> </ul>		j) Place two markers, one at the lowest frequency and the of frequency of the envelope of the spectral display, such that slightly below the "-xx dB down amplitude" determined in st below this "-xx dB down amplitude" value, then it shall be a this value. The occupied bandwidth is the frequency differe markers. Alternatively, set a marker at the lowest frequency	t each marker is at or tep h). If a marker is as close as possible to ence between the two y of the envelope of the
labeled. Tabular data may be reported in addition to the plot(s).		<ul> <li>amplitude" determined in step h). Reset the marker-delta fumarker to the other side of the emission until the delta mark same level as the reference marker amplitude. The marker at this point is the specified emission bandwidth.</li> <li>k) The occupied bandwidth shall be reported by providing prinstrument display; the plot axes and the scale units per division.</li> </ul>	unction and move the ker amplitude is at the -delta frequency reading plot(s) of the measuring vision shall be clearly
	Operating Environment:		
Departing Franciscoments	operating Environment:		



DAG


## 4.3 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	<ul> <li>This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: <ul> <li>a) Use the following spectrum analyzer settings:</li> <li>1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.</li> <li>2) RBW &gt; 20 dB bandwidth of the emission being measured.</li> <li>3) VBW &gt;= RBW.</li> <li>4) Sweep: Auto.</li> <li>5) Detector function: Peak.</li> <li>6) Trace: Max hold.</li> <li>b) Allow trace to stabilize.</li> </ul> </li> </ul>
LE	<ul> <li>c) Use the marker-to-peak function to set the marker to the peak of the emission.</li> <li>d) The indicated level is the peak output power, after any corrections for external attenuators and cables.</li> <li>e) A plot of the test results and setup description shall be included in the test report.</li> <li>NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.</li> </ul>
4.3.1 E.U.T. Operation:	LE E

#### 4.3.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.2 °C		Humidity:	54.7 %	Atmospheric Pressure:	102 kPa		
Pretest mode: TM1,			TM2					
Final test mode: TM1, TM			TM2					

#### 4.3.2 Test Setup Diagram:



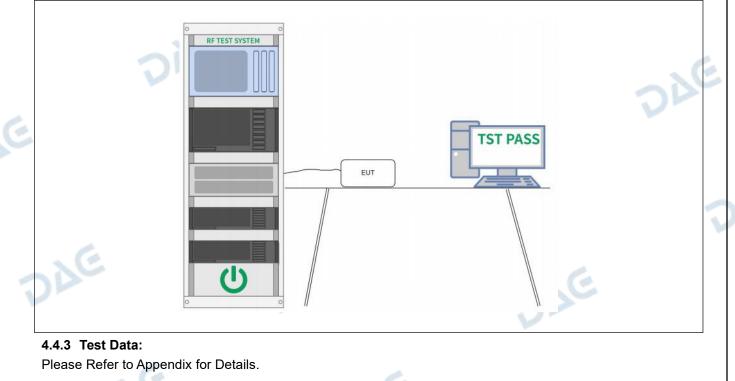
Tel: +86-755-23010613

Web: http://www.dace-lab.com

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China E-mail: service@dace-lab.com Page 17 of 85

Report No.: DACE240412007RL001

## 4.4 Channel Separation


DAG

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto.
1e	<ul> <li>e) Detector function: Peak.</li> <li>f) Trace: Max hold.</li> <li>g) Allow the trace to stabilize.</li> <li>Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.</li> </ul>

## 4.4.1 E.U.T. Operation:

Operating Environment:							
Temperature: 22.2 °C		Humidity:	54.7 %	-	Atmospheric Pressure:	102 kPa	
Pretest mode:	ТМ3,	TM4		C		. 6	
Final test mode:	TM3,	TM4	NC			200	

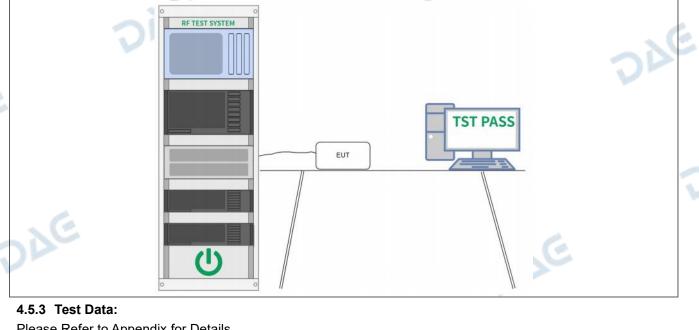
### 4.4.2 Test Setup Diagram:



H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com Page 18 of 85

DΔC


Report No.: DACE240412007RL001

4.5 Number of Hop	ping Frequencies
Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	<ul> <li>The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:</li> <li>a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.</li> <li>b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.</li> </ul>
AC	<ul> <li>c) VBW ≥ RBW.</li> <li>d) Sweep: Auto.</li> <li>e) Detector function: Peak.</li> <li>f) Trace: Max hold.</li> <li>g) Allow the trace to stabilize.</li> <li>It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.</li> </ul>

#### 4.5.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.2 °C		Humidity:	54.7 %		Atmospheric Pressure:	102 kPa	C
Pretest mode: TM3,		TM4	V			22		
Final test mode: TM3, T		TM4						

### 4.5.2 Test Setup Diagram:



Please Refer to Appendix for Details.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Page 19 of 85 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

Report No.: DACE240412007RL001

## 4.6 Dwell Time

DAG

Test Requirement: Test Limit:	47 CFR 15.247(a)(1)(iii) Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5
Test Limit:	Refer to 47 CER 15 247(a)(1)(iii) Fequency bonning systems in the 2400-2483 5
	MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate th total number of hops in the period specified in the requirements, using the followin equation: (Number of hops in the period specified in the requirements, using the followin equation: (Number of hops in the period specified in the requirements.) = (number of hops in the period specified in the requirements) = (number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation. The measured transmit time and time between hops shall be consistent with the

#### 4.6.1 E.U.T. Operation:

Operating Envir	V			22		
Temperature:	22.2 °C		Humidity:	54.7 %	Atmospheric Pressure:	102 kPa
Pretest mode:		ТМЗ,	TM4			
Final test mode:		ТМ3,	TM4	6		
4.6.2 Test Setup Diagram:				Nº.		C

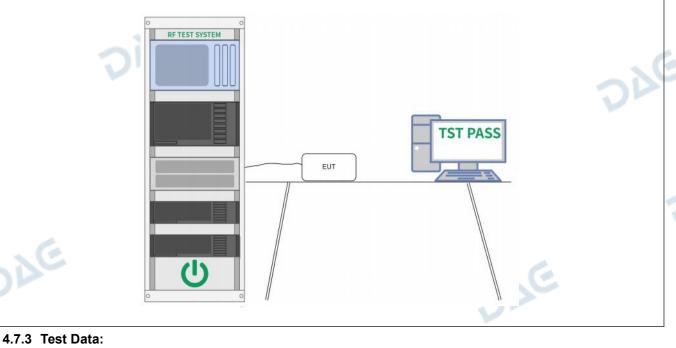
1

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG -	V1.0	1C	Report No.: DACE2404	12007RL001
DAC	O O O	EUT	TST PASS	DAG
<b>4.6.3 Test Data:</b> Please Refer to App	pendix for Details.	E		
~ (		nology Park, Tangtou, Shiyan, Bao'ar		to include

DAG

Report No.: DACE240412007RL001


## 4.7 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

## 4.7.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.2 °C		Humidity:	54.7 %	-	Atmospheric Pressure:	102 kPa	
Pretest mode: TM1,			TM2, TM3, T	TM4	C		. 6	
Final test mode: TM1,			TM2, TM3, T	rM4			2	

#### 4.7.2 Test Setup Diagram:



Please Refer to Appendix for Details.

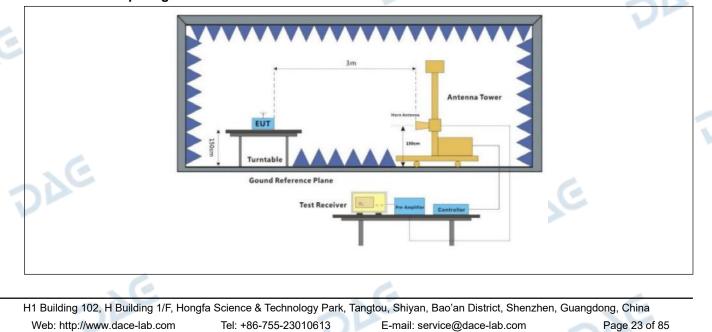
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613

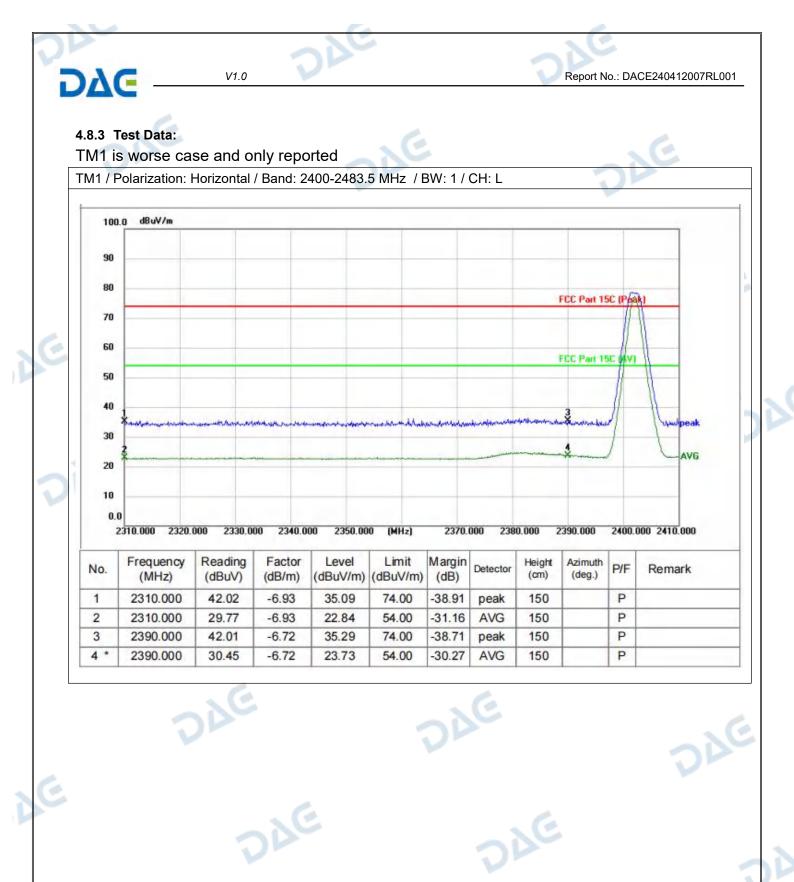
E-mail: service@dace-lab.com Page 22 of 85

Report No.: DACE240412007RL001

## 4.8 Band edge emissions (Radiated)

DAG


Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).						
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
240	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	60 500 3					
AE	radiators operating under thi 54-72 MHz, 76-88 MHz, 174 these frequency bands is per and 15.241. In the emission table above, The emission limits shown in employing a CISPR quasi-per 110–490 kHz and above 100	as provided in paragraph (g), fundamental emissions from intentional perating under this section shall not be located in the frequency bands z, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within uency bands is permitted under other sections of this part, e.g., §§ 15.23 1. ssion table above, the tighter limit applies at the band edges. ion limits shown in the above table are based on measurements a CISPR quasi-peak detector except for the frequency bands 9–90 kHz Hz and above 1000 MHz. Radiated emission limits in these three bands on measurements employing an average detector.					
Test Method:	ANSI C63.10-2013 section 6 KDB 558074 D01 15.247 Me						
Procedure:	ANSI C63.10-2013 section 6	6.10.5.2	10				
4.8.1 E.U.T. Operation:			24				


. 6

#### Operating Environment:

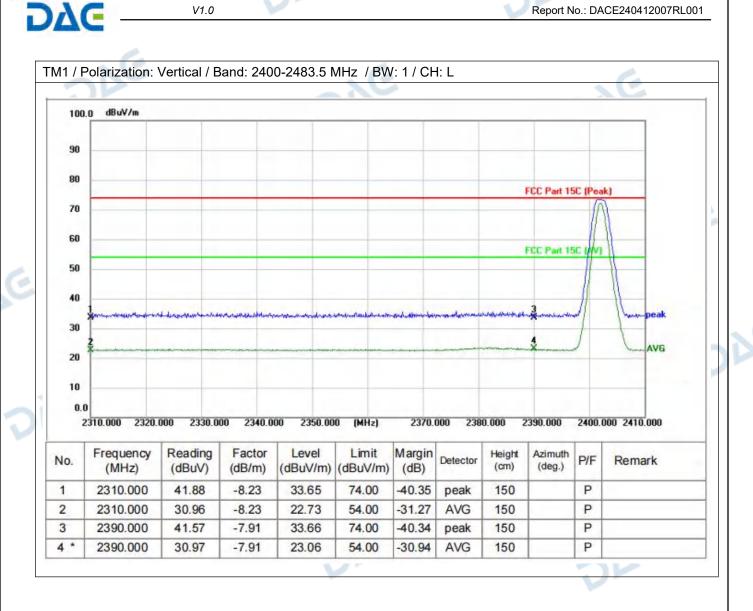
Operating Envir	Operating Environment:								
Temperature:	22.2 °C		Humidity:	54.7 %	Atmospheric Pr	essure:	102 kPa		
Pretest mode: TN			TM2		6				
Final test mode: TM1					200				

#### 4.8.2 Test Setup Diagram:





H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 24 of 85


DAG

)DE

)AE

Report No.: DACE240412007RL001

NE



DAE

)AC

4

DAE

DAG

)AC

DAG

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 25 of 85

)ÀC

DAC V1.0 Report No.: DACE240412007RL001 TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H 100.0 dBuV/m 90 80 FCC Part 15C (Peak) 70 60 FCC Part 15C (AV) 50 Ĩ 40 30 XAVG 20 10 0.0 2470.000 2473.000 2476.000 2479.000 2482.000 (MHz) 2488.000 2491.000 2494.000 2497.000 2500.000 Reading Frequency Level Limit Factor Margin Height Azimuth Detector P/F Remark No. (cm) (deg.) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) (MHz) 2483.500 52.37 -6.47 45.90 74.00 -28.10 150 P 1 peak 2 * 2483.500 43.66 -6.47 37.19 54.00 -16.81 AVG 150 P P 2500.000 42.80 -6.43 150 3 36.37 74.00 -37.63 peak 2500.000 31.20 -29.23 P -6.43 24.77 54.00 AVG 150 4

DAG

DAG

٧

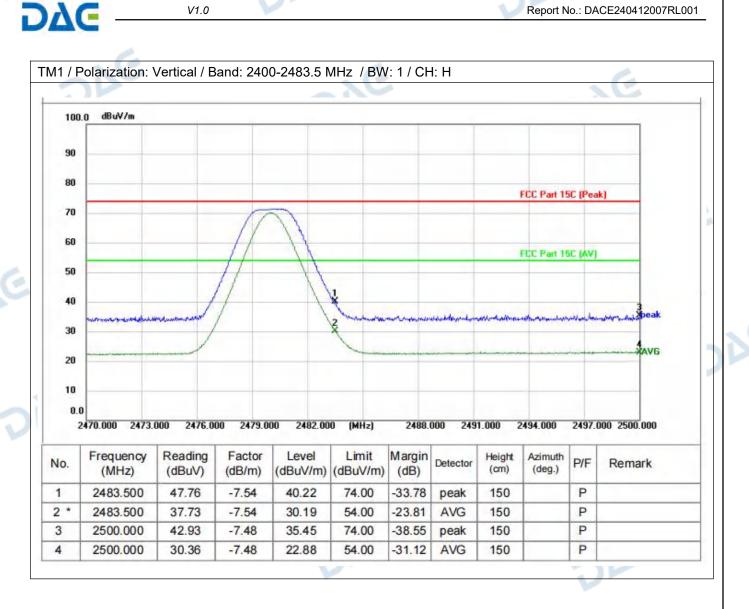
4

DAG

DAE

)AC

DAG


H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

Page 26 of 85

NE

Report No.: DACE240412007RL001



DAG

DAG

)AC

DAG

)AC

DAG

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

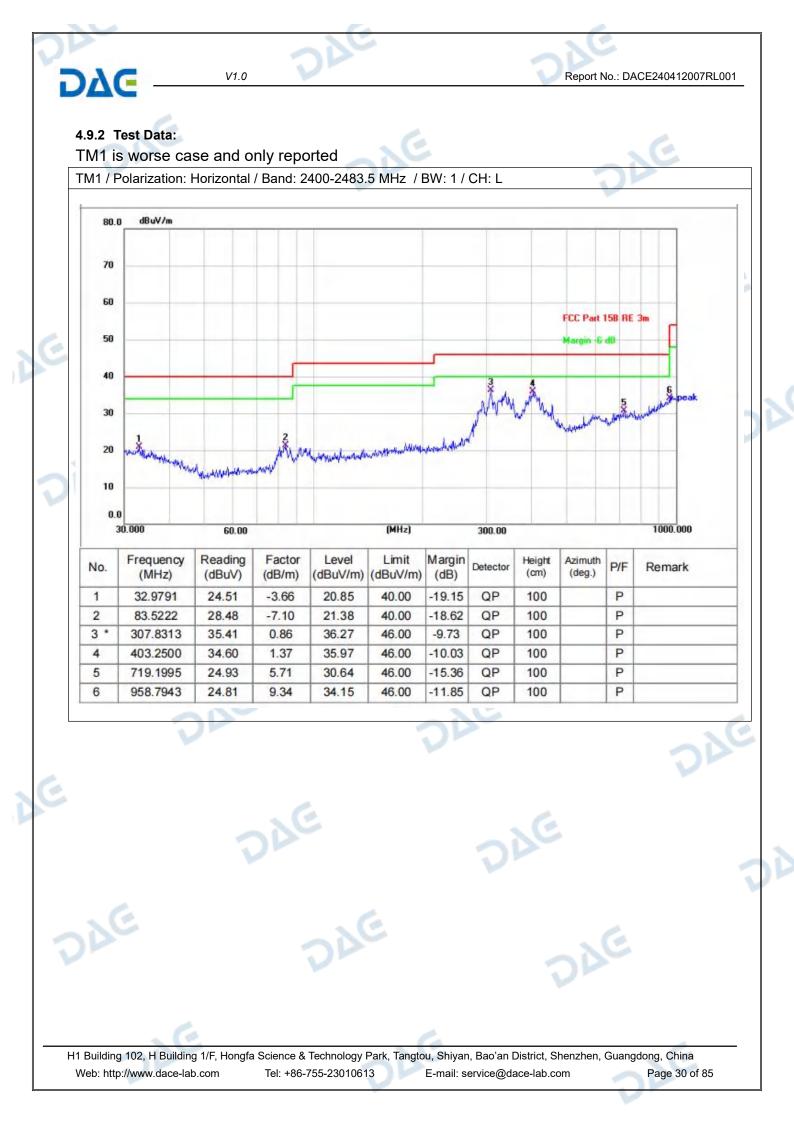
)AC

Page 27 of 85

DE

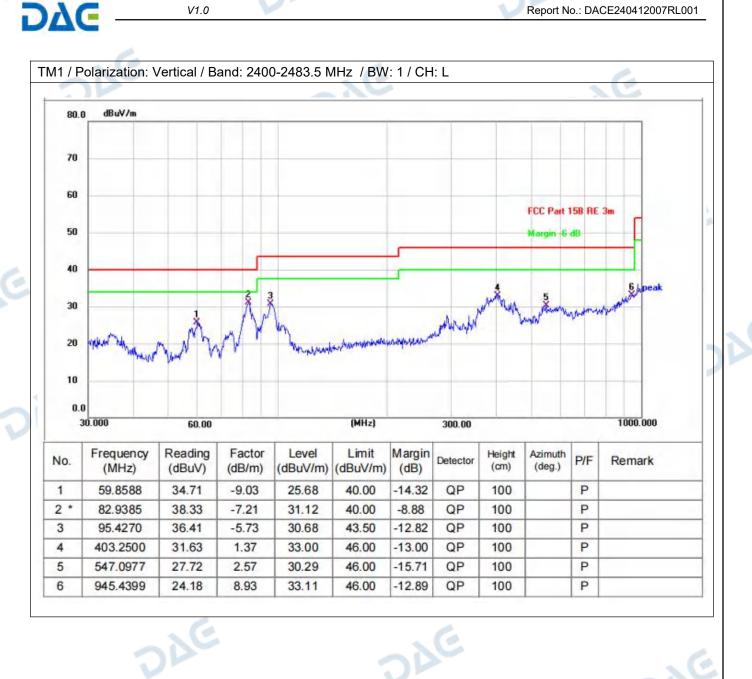
## 4.9 Emissions in frequency bands (below 1GHz)

V1.0


DΔC

Test Requirement:	restricted bands, as define	(d), In addition, radiated emissioned in § 15.205(a), must also c in § 15.209(a)(see § 15.205(c)	omply with the radiated							
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)							
	0.009-0.490	2400/F(kHz)	300							
	0.490-1.705	24000/F(kHz)	30							
	1.705-30.0	30	30							
	30-88	100 **	3							
	88-216	150 **	3							
	216-960	200 **	3							
	Above 960	500	3							
Test Method:	and 15.241. In the emission table above The emission limits show employing a CISPR qua 110–490 kHz and above are based on measurem ANSI C63.10-2013 secti		he band edges. I on measurements frequency bands 9–90 kHz limits in these three bands							
200	KDB 558074 D01 15.247 Meas Guidance v05r02a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters									
Procedure:	above the ground at a 3 360 degrees to determin b. For above 1GHz, the above the ground at a 3 degrees to determine the c. The EUT was set 3 or which was mounted on t d. The antenna height is determine the maximum polarizations of the anten e. For each suspected e the antenna was tuned t below 30MHz, the anten was turned from 0 degree f. The test-receiver syste Bandwidth with Maximur g. If the emission level o specified, then testing co reported. Otherwise the tested one by one using reported in a data sheet. h. Test the EUT in the low i. The radiation measure Transmitting mode, and	or 10 meter semi-anechoic cha e the position of the highest rad EUT was placed on the top of a meter fully-anechoic chamber. e position of the highest radiation 10 meters away from the interf he top of a variable-height anter value of the field strength. Both nna are set to make the measu mission, the EUT was arranged to heights from 1 meter to 4 meter a was tuned to heights 1 meter es to 360 degrees to find the meter mass set to Peak Detect Fund meters and the peak v emissions that did not have 100 peak, quasi-peak or average meters a set a set or average meters and the peak or a set or average meters and the peak or a variable stopped and the peak or a variable stopped or average meters and the peak or a variable stopped or average meters and the peak or average	amber. The table was rotate diation. a rotating table 1.5 meters The table was rotated 360 on. ference-receiving antenna, enna tower. meters above the ground to h horizontal and vertical rement. d to its worst case and then ters (for the test frequency of er) and the rotatable table naximum reading. ction and Specified OdB lower than the limit values of the EUT would be dB margin would be re- method as specified and the hel, the Highest channel. axis positioning for nich it is the worst case.							
. 6	Remark: 1) For emission below 1	GHz, through pre-scan found th	ne worst case is the lowest							

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 28 of 85


ינ	DAG -	Ŋ	/1.0	2		Rep	ort No.: DACE2404120	)07F
	DAC	2 2 2 2 6	2) Th Preat Final Preat 3) Sc was v founc spurie the lit	e field streng mplifier. The Test Level = mplifier Facto an from 9kH very low. The when testin ous emissior	oth is calculat basic equation Receiver Rea or iz to 25GHz, t e points marke og, so only about ns from the ra be reported.	s recorded in the report. ed by adding the Antenna Fa on with a sample calculation is ading + Antenna Factor + Cal he disturbance above 12.750 ed on above plots are the hig ove points had been displaye diator which are attenuated r Fundamental frequency is blo	s as follows: ble Factor "C GHz and below 30l hest emissions co ed. The amplitude o nore than 20dB be	MH ould of elov
_	4.9.1 E.U.T. Op	peration:					J J	) )
	Operating Envir						-	
5	Temperature:	22.2 °C		Humidity:	54.7 %	Atmospheric Pressure:	102 kPa	
ļ	Pretest mode:		TM1			. 6		
	Final test mode		TM1			200		
				2				

Page 29 of 85



Report No.: DACE240412007RL001

0



H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 31 of 85

)AC

)De

DAG

)De

\$

DAG

DΔC

Report No.: DACE240412007RL001

## 4.10 Emissions in frequency bands (above 1GHz)

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 32 of 85

DAG -	V1.0	Report No.: DACE240412007RL001
DAG	Preamplifier. The basic equation Final Test Level =Receiver Rea Preamplifier Factor 3) Scan from 9kHz to 25GHz, was very low. The points mark found when testing, so only ab	ted by adding the Antenna Factor, Cable Factor & on with a sample calculation is as follows: ading + Antenna Factor + Cable Factor "C the disturbance above 12.75GHz and below 30MHz ed on above plots are the highest emissions could be ove points had been displayed. The amplitude of
		adiator which are attenuated more than 20dB below Fundamental frequency is blocked by filter, and only

#### 4.10.1 E.U.T. Operation:

Operating Enviro	onment:					
Temperature:	22.2 °C		Humidity:	54.7 %	Atmospheric Pressure:	102 kPa
Pretest mode:	-	TM1,	TM2		. 6	
Final test mode:		TM1,	TM2		200	

### 4.10.2 Test Data:

NC

## TM1 is worse case and only reported

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4807.000	48.71	-0.89	47.82	74.00	-26.18	peak	150		P	
2	4807.000	32.42	-0.89	31.53	54.00	-22.47	AVG	150	1	P	1
3	7204.000	48.06	4.13	52.19	74.00	-21.81	peak	150		P	
4 *	7204.000	31.79	4.13	35.92	54.00	-18.08	AVG	150		P	

#### TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4807.000	44.95	-0.27	44.68	74.00	-29.32	peak	150		P	
2	4807.000	30.34	-0.27	30.07	54.00	-23.93	AVG	150		P	
3	7204.000	44.97	4.09	49.06	74.00	-24.94	peak	150		P	
4 *	7204.000	30.10	4.09	34.19	54.00	-19.81	AVG	150		P	

1AC

e

DVC

NE

Report No.: DACE240412007RL001

1											
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4877.500	46.26	-0.04	46.22	74.00	-27.78	peak	150		P	
2	4877.500	31.18	-0.04	31.14	54.00	-22.86	AVG	150		P	
3	7321.500	47.44	4.36	51.80	74.00	-22.20	peak	150		P	
4 *	7321.500	31.18	4.36	35.54	54.00	-18.46	AVG	150	-	P	

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: M

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4877.500	47.91	-0.65	47.26	74.00	-26.74	peak	150		P	
2	4877.500	33.29	-0.65	32.64	54.00	-21.36	AVG	150		P	
3	7321.500	48.84	4.31	53.15	74.00	-20.85	peak	150		P	
4 *	7321.500	32.11	4.31	36.42	54.00	-17.58	AVG	150		P	

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4959.750	47.59	-0.37	47.22	74.00	-26.78	peak	150		P	
2	4959.750	32.70	-0.37	32.33	54.00	-21.67	AVG	150		P	
3	7439.000	43.69	4.49	48.18	74.00	-25.82	peak	150		P	
4 *	7439.000	28.47	4.49	32.96	54.00	-21.04	AVG	150		P	

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4959.750	46.08	0.23	46.31	74.00	-27.69	peak	150	-	P	
2	4959.750	31.23	0.23	31.46	54.00	-22.54	AVG	150		P	
3	7439.000	40.39	4.64	45.03	74.00	-28.97	peak	150		P	
4 *	7439.000	27.02	4.64	31.66	54.00	-22.34	AVG	150		P	

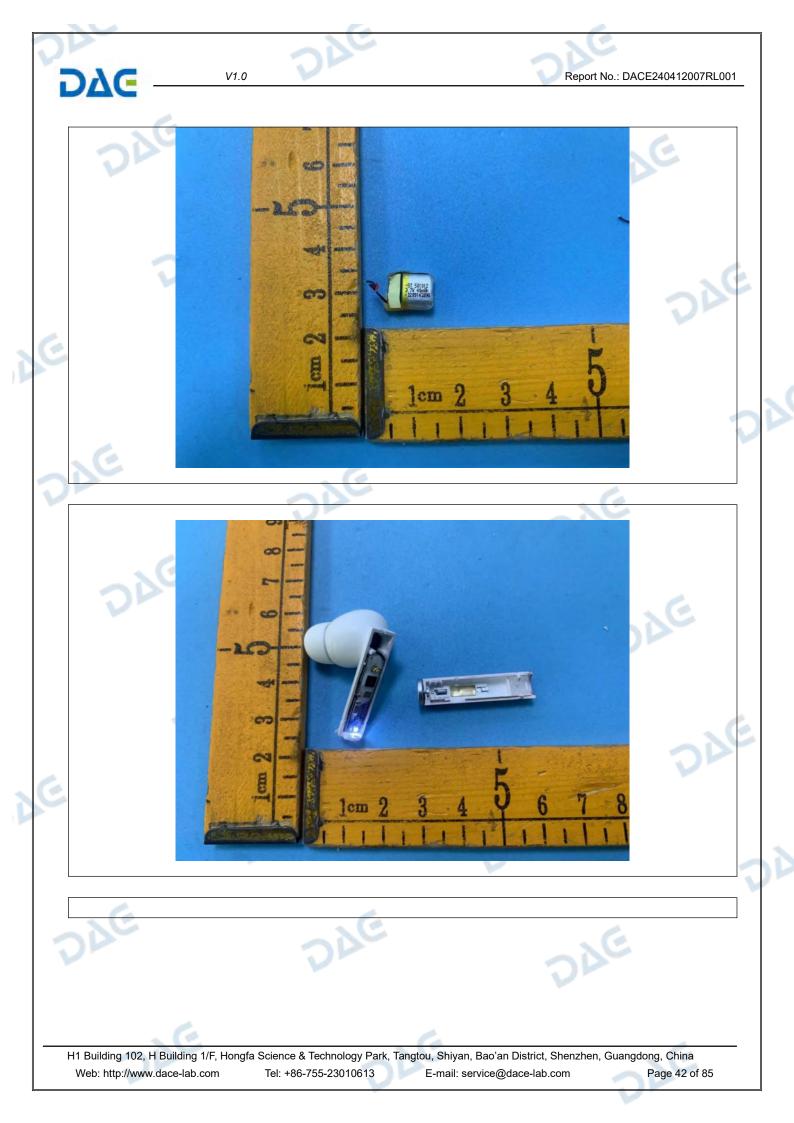
)AC

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 34 of 85

C

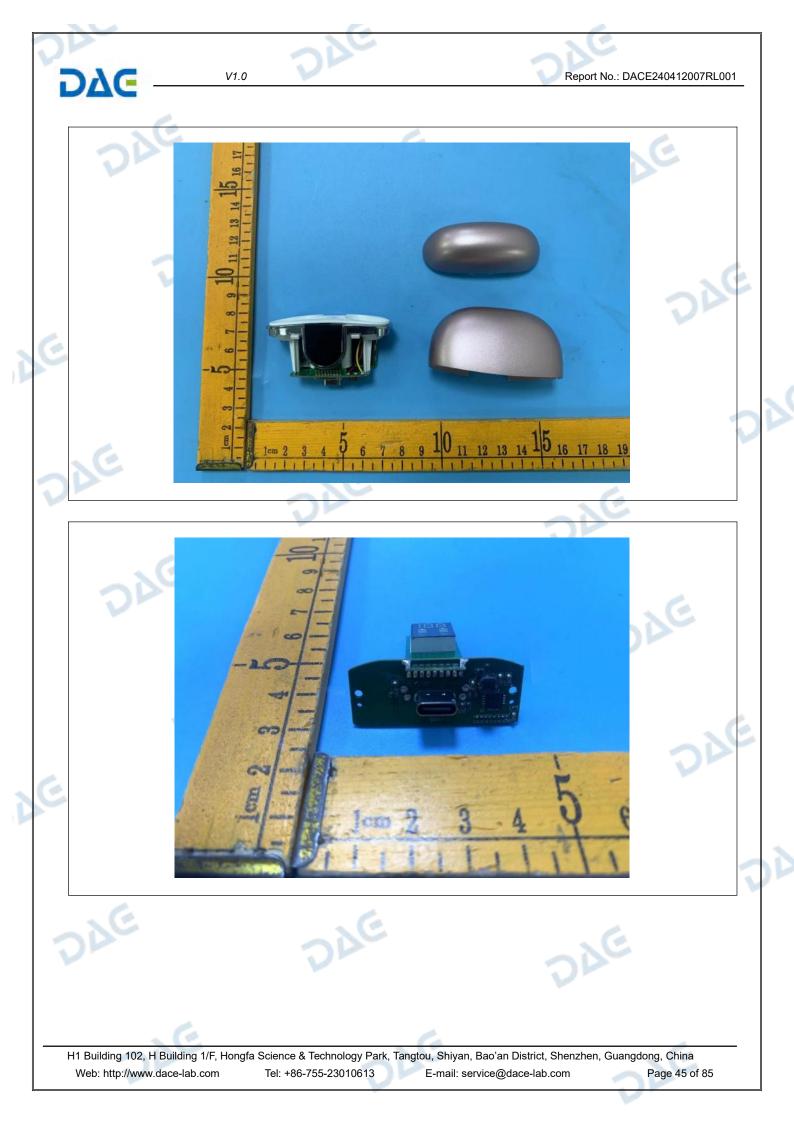

























Report No.: DACE240412007RL001

# HT240412007--BX35--EDR--FCC FCC_BT (Part15.247) Test Data

### 1. -20dB Bandwidth

V1.0

DAG

Condition	Antenna	Modulation	Frequency (MHz)	-20dB BW(MHz)	if larger than CFS
NVNT	ANT1	1-DH5	2402.00	0.920	No
NVNT	ANT1	1-DH5	2441.00	0.918	No
NVNT 🔰	ANT1	1-DH5	2480.00	0.856	No
NVNT	ANT1	2-DH5	2402.00	1.224	Yes
NVNT	ANT1	2-DH5	2441.00	1.225	Yes
NVNT	ANT1	2-DH5	2480.00	1.231	Yes







- NE		2400
V	-20dB_Bandwidth_NVNT_ANT1_2-DH5	_2480
	Trig: Free Run Avg Hold: 10/10	Radio Device: BTS
	10 dB/dly Ref 14.70 dBm	Center Freq
2	6.0 163 253	2.48000000 GHz
	353 453 653	
3	75.3	
	Center 2.48 GHz #Res BW 30 kHz #VBW 100 kHz	Span 3 MHz Sweep 3.2 ms Auto Man
	Occupied Bandwidth Total Power 2.88 1.1654 MHz	FreqOffset
6	Transmit Freq Error       -34.455 kHz       % of OBW Power       99.         x dB Bandwidth       1.231 MHz       x dB       -20.0	
o A C	MSG DISTATUS	
		Align Now All required
2AC		
	e.	

D

#### Report No.: DACE240412007RL001

## 2. 99% Occupied Bandwidth

DΔC

Condition	Antenna	Modulation	Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	1-DH5	2402.00	0.844
NVNT	ANT1	1-DH5	2441.00	0.842
NVNT	ANT1	1-DH5	2480.00	0.841
NVNT	ANT1	2-DH5	2402.00	1.163
NVNT	ANT1	2-DH5	2441.00	1.165
NVNT	ANT1	2-DH5	2480.00	1.165

C







DAG -	V1.0	Report No.: DACE240412007RL001
DAC	99%_Occupied_Bandwidth_NVNT_ANT1_2	
	Keysight Spectrum Analyzer - Occupied BW     Ref So Ac     Sense:INT     Center Freq 2.480000000 GHz     Trig: Free Run     #IFGain:Low     #IFGain:Low     Ref Offset 3.85 dB     O dB	CI-145:48 PM Apr 17, 2024 Radio Std: None Radio Device: BTS
2	10 dB/div Ref 14.70 dBm	Center Freq 2.48000000 GHz
Ξ	653 653 753 Center 2.48 GHz TD = D 4.8 GHz TD = D 4.8 GHz	Span 3 MHz CF Step
	1.1652 MHz	dBm Auto Man Freq Offset
E		00 % 0 H2 00 dB
		CAlign Now All required
e.		

D

1

Report No.: DACE240412007RL001

### 3. Peak Output Power

DΔC

Condition	Antenna	Modulation	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1-DH5	2402.00	-3.13	0.49	1000	Pass
NVNT	ANT1	1-DH5	2441.00	-3.34	0.46	1000	Pass
NVNT	ANT1	1-DH5	2480.00	-4.09	0.39	1000	Pass
NVNT	ANT1	2-DH5	2402.00	-1.83	0.66	125	Pass
NVNT	ANT1	2-DH5	2441.00	-1.92	0.64	125	Pass
NVNT	ANT1	2-DH5	2480.00	-3.20	0.48	125	Pass



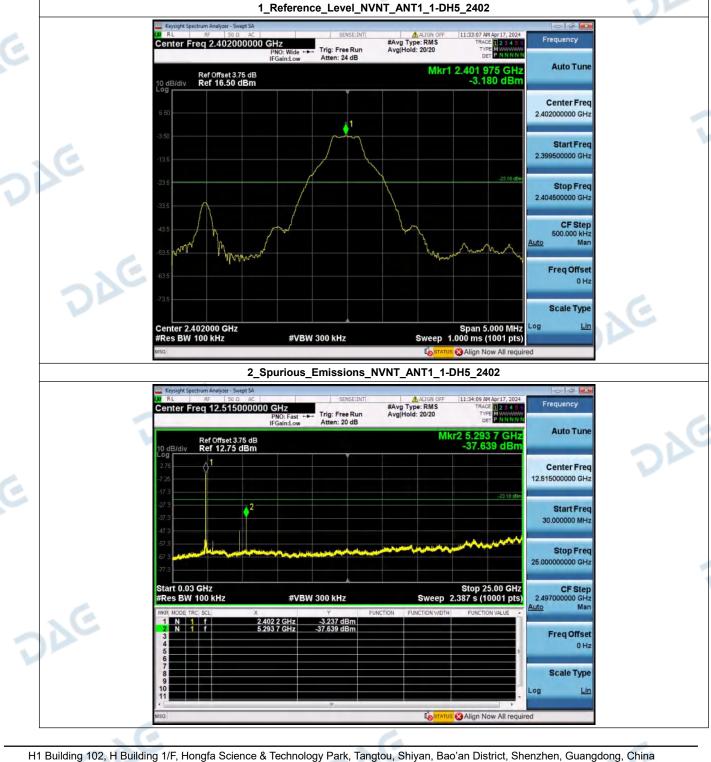




- OF	Keysight Spectrum Analyzer - Swep		VNT_ANT1_2-DH5_2480	- 5 💌	5
	DR         RF         50.0           Center Freq 2.480000         Ref 0ffset 3.85           10 dB/div         Ref 10.70 dl	AC SENSE:DNT D000 GHz PNO: Fast IFGain:Low Trig: Free Run Atten: 18 dB dB	Aug Type: RMS Avg Type: RMS Avg Hold: 10/10 Mkr1 2.479 912 G -3,200 dE	Auto Tune	
	0.700 .9.30	↓1		Center Freq 2.48000000 GHz Start Freq	
	-19.3			2.47600000 GHz Stop Freq 2.48400000 GHz	
	-39.3 -49.3 -59.3			CF Step 800.000 kHz <u>Auto</u> Man	
6	-69.3			Freq Offset 0 Hz Scale Type	
DAG	Center 2.480000 GHz #Res BW 3.0 MHz	#VBW 8.0 MHz	Span 8.000 № Sweep 1.000 ms (1001 p C <mark>ostatus</mark> 🏹 Align Now All n	ots)	

D

Report No.: DACE240412007RL001


#### V1.0

## 4. Spurious Emissions

DAG

Condition	Antenna	Modulation	TX Mode	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1-DH5	2402.00	-37.639	-23.180	Pass
NVNT	ANT1	1-DH5	2441.00	-44.600	-23.376	Pass
NVNT	ANT1	1-DH5	2480.00	-43.995	-24.097	Pass
NVNT	ANT1	2-DH5	2402.00	-47.337	-23.209	Pass
NVNT	ANT1	2-DH5	2441.00	-40.082	-23.306	Pass
NVNT	ANT1	2-DH5	2480.00	-49.027	-24.537	Pass

C




Web: http://www.dace-lab.com

Tel: +86-755-23010613

gtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China E-mail: service@dace-lab.com Page 60 of 85











#### V1.0

DAG

)De

Report No.: DACE240412007RL001

#### 5. Bandedge

DAG

DAG

2

)DE

DAG

DAG

)AC

Condition	Antenna	Modulation	TX Mode	Bandedge MAX.Value	Limit	Result
NVNT	ANT1	1-DH5	2402.00	-31.895	-23.180	Pass
NVNT	ANT1	1-DH5	Hopping_LCH	-33.193	-23.167	Pass
NVNT	ANT1	1-DH5	2480.00	-54.048	-24.097	Pass
NVNT	ANT1	1-DH5	Hopping_HCH	-53.304	-23.104	Pass
NVNT	ANT1	2-DH5	2402.00	-31.603	-23.209	Pass
NVNT	ANT1	2-DH5	Hopping_LCH	-33.080	-23.170	Pass
NVNT	ANT1	2-DH5	2480.00	-54.617	-24.537	Pass
NVNT	ANT1	2-DH5	Hopping_HCH	-54.312	-23.469	Pass

)De

DAG

)AC

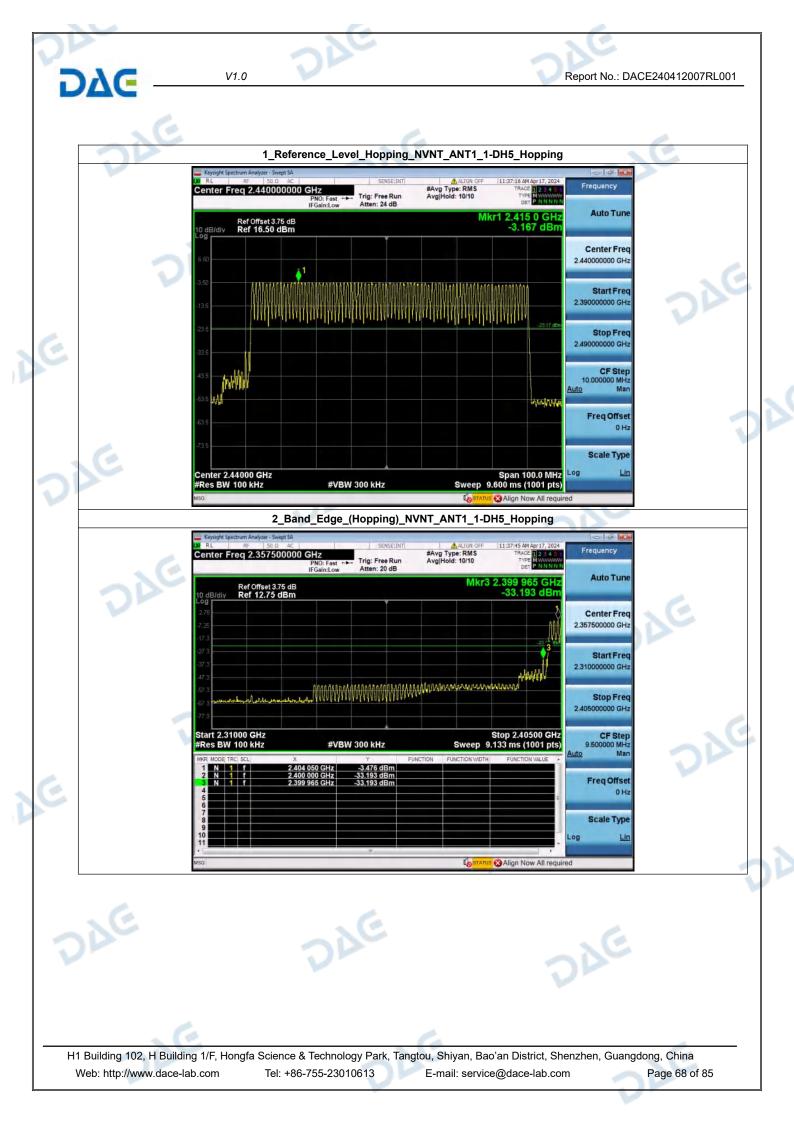
DAG

DAG

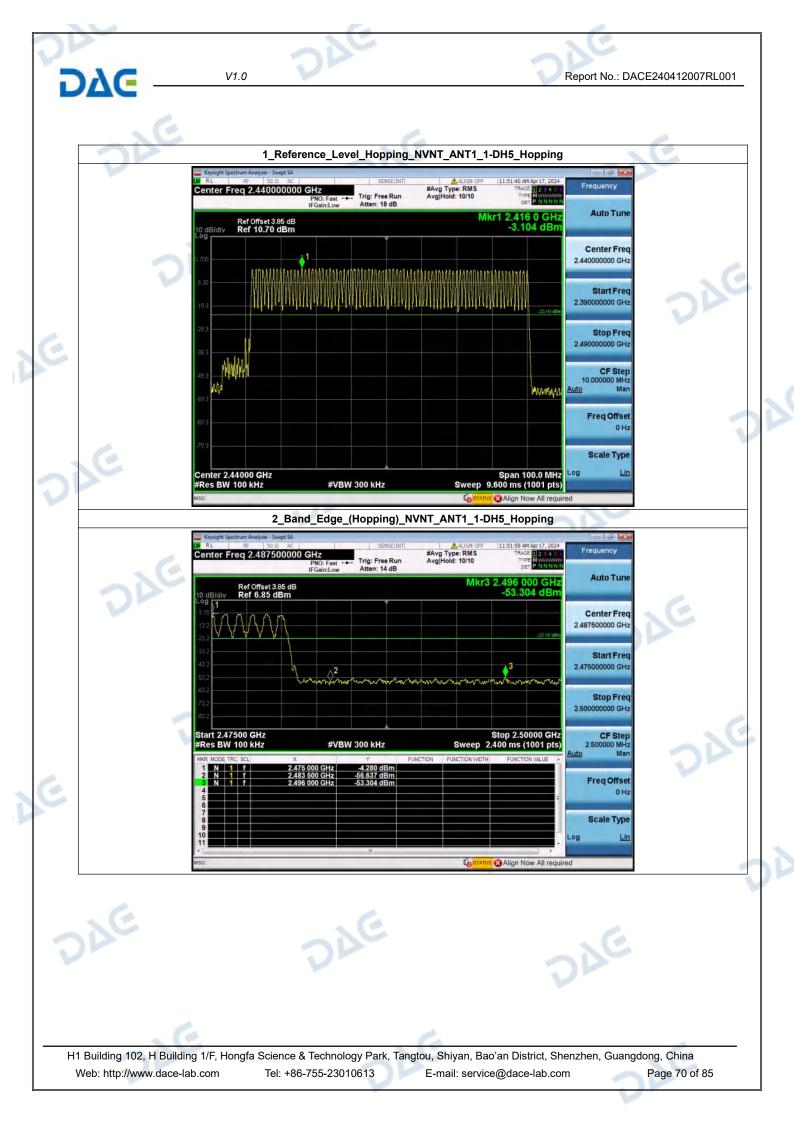
DAG

DAG

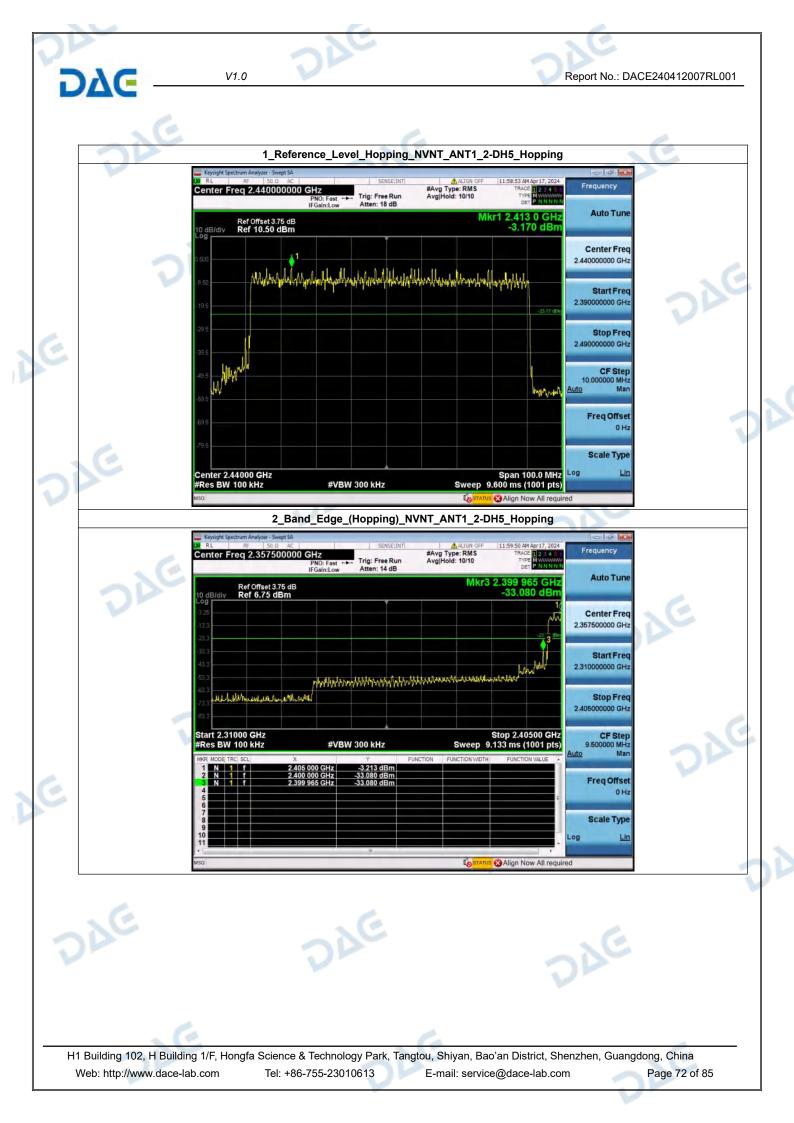
,De


e

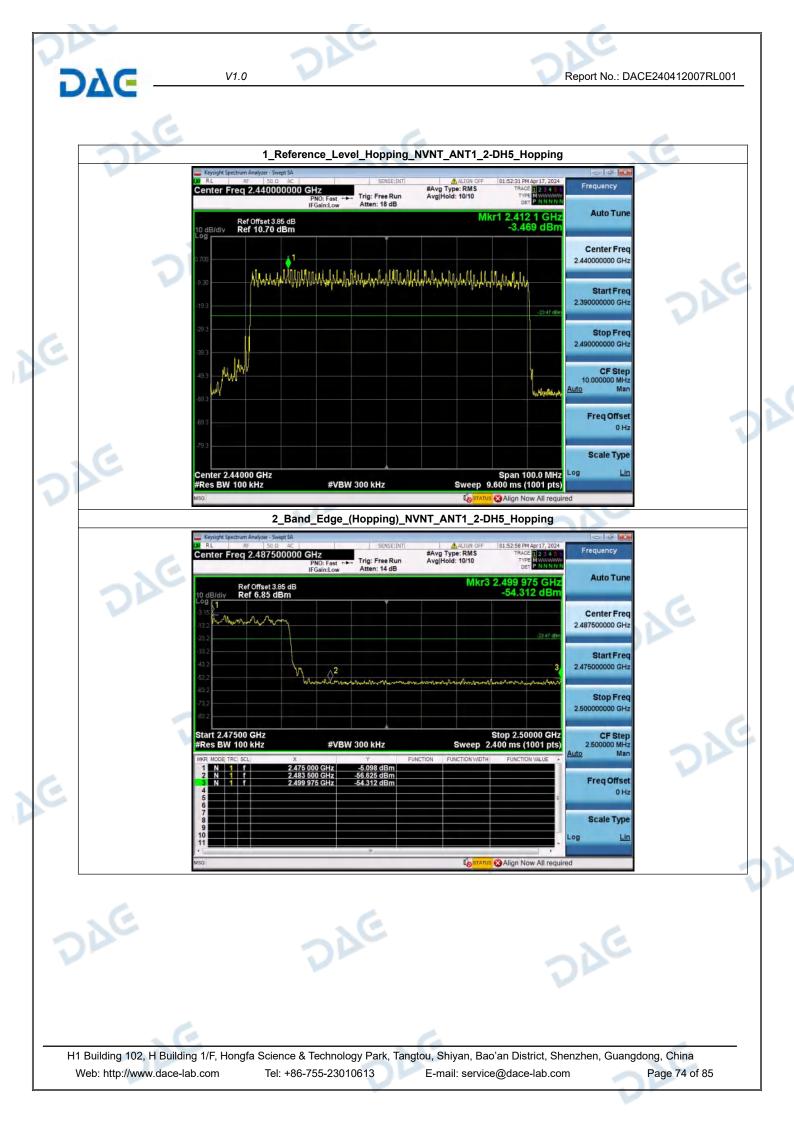
 H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China


 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 66 of 85

)AC
















## Report No.: DACE240412007RL001

1

DΔC

6.	Carrier	Frequencies	Separation	(Hopping)

Condition	Antenna	Modulation	Frequency(MHz)	Hopping NO.0 (MHz)	Hopping NO.1 (MHz)	Carrier Frequencies Separation(MHz)	Limit(MHz)	Result
NVNT	ANT1	1-DH5	2402.00	2401.975	2402.974	1.00	0.920	Pass
NVNT	ANT1	1-DH5	2441.00	2440.975	2442.148	1.17	0.918	Pass
NVNT	ANT1	1-DH5	2480.00	2478.975	2479.974	1.00	0.856	Pass
NVNT	ANT1	2-DH5	2402.00	2401.822	2402.983	1.16	0.816	Pass
NVNT	ANT1	2-DH5	2441.00	2440.975	2442.139	1.16	0.817	Pass
NVNT	ANT1	2-DH5	2480.00	2478.966	2480.130	1.16	0.821	Pass







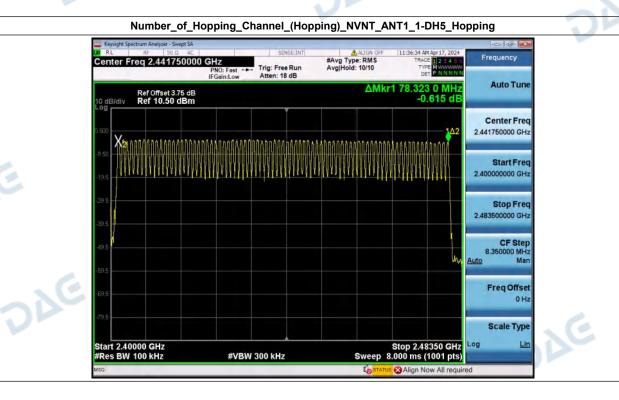
Frequency Auto Tune O.013 dB Center Freq 2.479500000 GHz Start Freq 2.47800000 GHz CF Step 300.000 KHz Auto Man Freq Offset 0 Hz Scale Type Log Lin 3Align Now All required
Center Freq 2.479500000 GHz Start Freq 2.478000000 GHz Stop Freq 2.481000000 GHz CF Step 300.000 kHz Auto Man Freq Offset 0 Hz Scale Type Log Lin 0 Oms (1001 pts) Align Now All required
2.47800000 GHz Stop Freq 2.48100000 GHz CF Step 300.000 KHz Auto Man Freq Offset 0 Hz Scale Type Log Lin 00 ms (1001 pts) 3 Align Now All required
Span 3.000 MHz Span 3.000 MHz Span 3.000 MHz Auto Man Freq Offset 0 Hz Log Lin 3 Align Now All required
CF Step 300.000 kHz Auto Man Freq Offset 0 Hz Scale Type Log Lin 00 ms (1001 pts) Align Now All required
Auto Man Freq Offset 0 Hz Scale Type Log Lin 00 ms (1001 pts) 3 Align Now All required
Scale Type Span 3.000 MHz 00 ms (1001 pts) 3 Align Now All required
Span 3.000 MHz 00 ms (1001 pts) 3 Align Now All required
3 Align Now All required
- (e.

D

V1.0

DAG

1


2

4

DAG

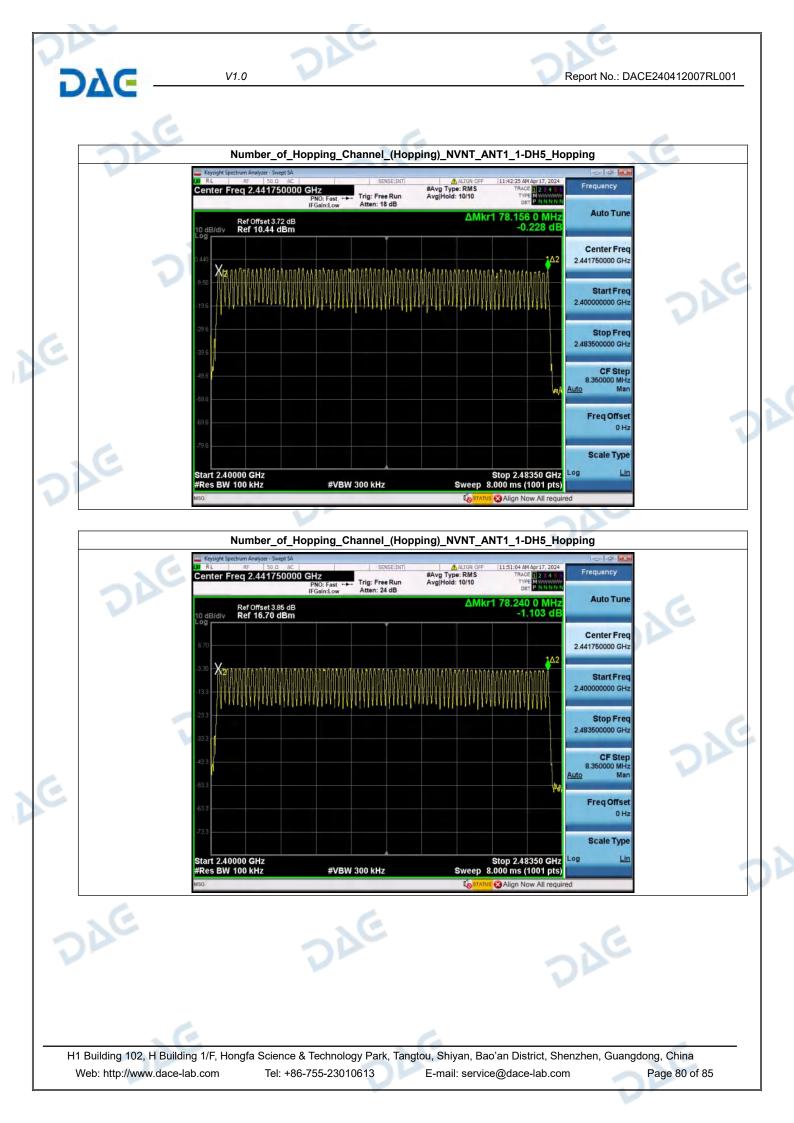
## 7. Number of Hopping Channel (Hopping)

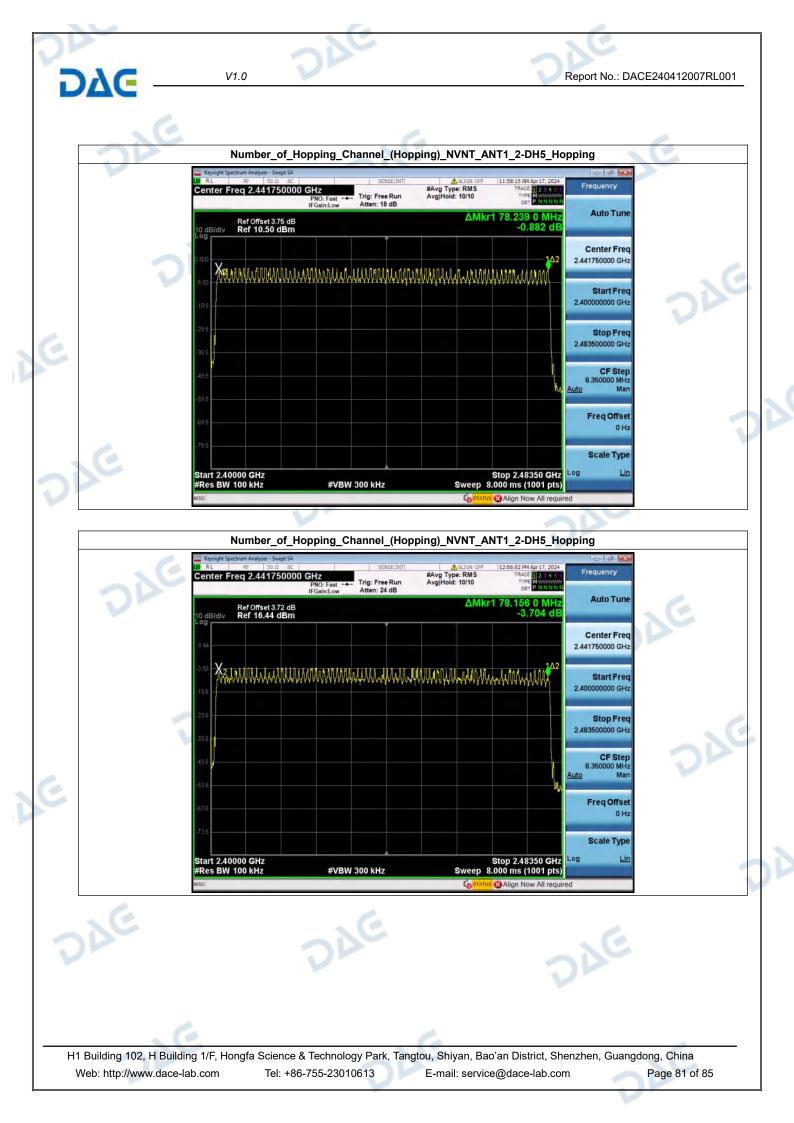
Condition	Antenna	Modulation	Hopping Num	Limit	Result
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass



DAG

)AC


DAG


H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Page 79 of 85 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)DE

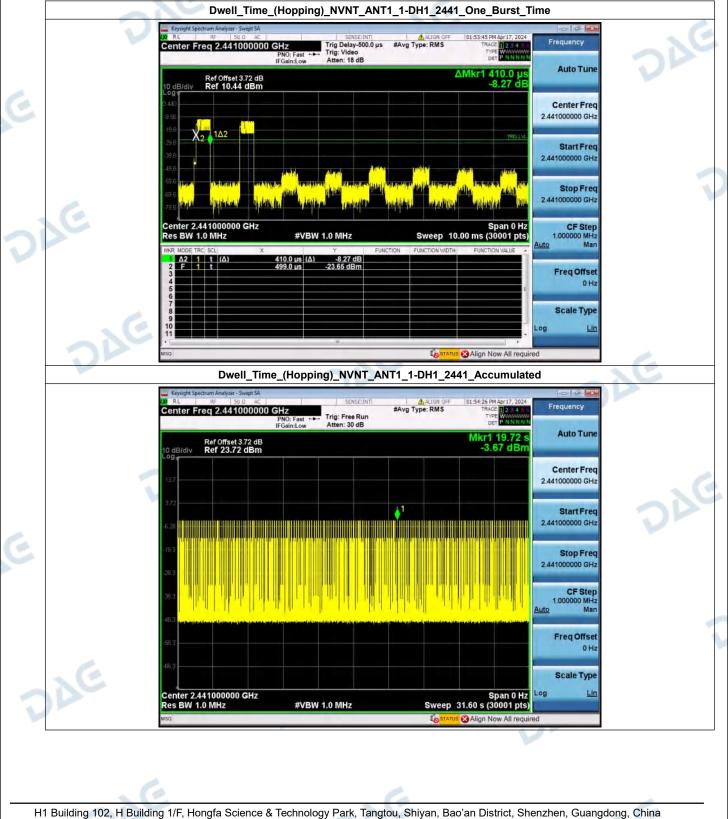
NE





DP	Keysight Spectrum Analyzer - Swept SA  KM RL RF 50 Ω AC  Center Freq 2.441750000 GH PN	SENSE:INT SENSE:INT Trig: Free Run Atten: 18 dB Avg He	ALLON OFF 01.51:40 PM Apr 17, 2024 ype: RMS TRACE 2.2.43 bd: 10/10 Trace 2.2.43 DET P.NIMIN N AMkr1 78.239 0 MHz -0.772 dB	pping Frequency Auto Tune	<u>.</u>
2	0.700 .9.30 <b>XELLING UNANUMANAN</b> .19.3		102 UMMMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Center Freq 2.441750000 GHz Start Freq 2.400000000 GHz Stop Freq	DAG
5	-39.3 -49.3 -69.3			2.483500000 GHz CF Step 8.350000 MHz <u>Auto</u> Man Freq Offset 0 Hz	-
DIE	-79.3 Start 2.40000 GHz #Res BW 100 kHz MS0	#VBW 300 kHz	Stop 2.48350 GHz Sweep 8.000 ms (1001 pts)		

V1.0

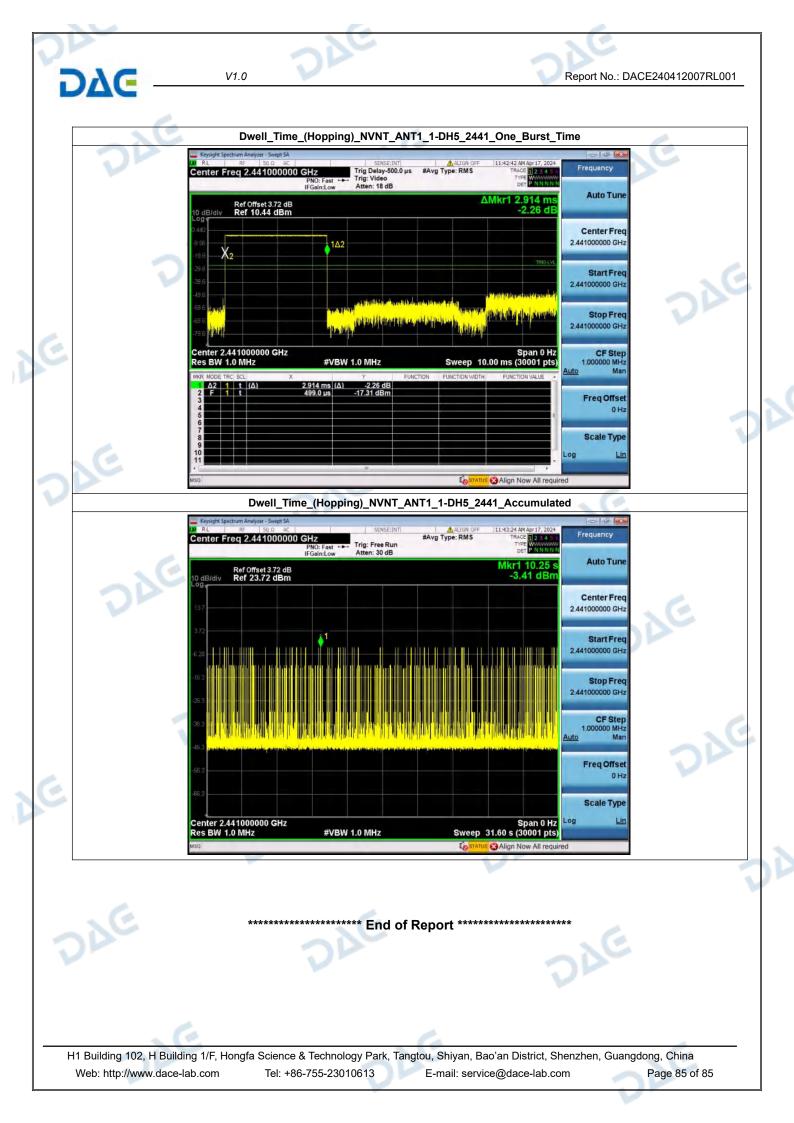

Report No.: DACE240412007RL001

## 8. Dwell Time (Hopping)

DAG

Condition	Antenna	Packet Type	Pulse Time(ms)	Hops	Dwell Time(ms)	Limit(s)	Result
NVNT	ANT1	1-DH5	2.914	94.00	273.916	0.40	Pass
NVNT	ANT1	1-DH1	0.410	320.00	131.200	0.40	Pass
NVNT	ANT1	1-DH3	1.667	157.00	261.719	0.40	Pass


C




Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com Page 83 of 85



