

Test Report Serial Number:
Test Report Date:
Project Number:

45461523 R2.0

10 September 2019 1452

EMC Test Report - New Filing

Applicant:

Myriota Pty Ltd. Lot 14 Frome Road Adelaide, Australia 5000

FCC ID:

2ATKL-SL2-1

Product Model Number / HVIN

SL2-1

Myriota Canada Inc. c/o PwC Law LLP 18 York Street, Suite 2500-C Toronto, ON, M5J 0B2

IC Registration Number

25148-SL21

Product Name / PMN

Sense&Locate

In Accordance With:

FCC 47 CFR Part 15 SubPart C

Intentional Radiators

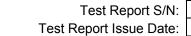
RSS-GEN, RSS-210 Issue 9

Licence-Exempt Radio Apparatus: Category I Equipment

Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada


Industry Canada

Test Lab Certificate: 2470.01

IC Registration 3874A-1

FCC Registration: CA3874

45461523 R2.0

10 September 2019

1.0 DOCUMENT CONTROL	5
2.0 CLIENT AND DUT INFORMATION	6
3.0 SCOPE	7
4.0 TEST RESULT SUMMARY	8
5.0 NORMATIVE REFERENCES	9
6.0 FACILITIES AND ACCREDITATIONS	10
7.0 RADIATED FIELD STRENGTH	11
8.0 BAND EDGE EVALUATION	21
9.0 RADIATED OUT OF BAND SPURIOUS EMISSIONS	24
APPENDIX A – TEST SETUP DRAWINGS AND EQUIPMENT	32
APPENDIX B – EQUIPMENT LIST AND CALIBRATION	34
APPENDIX C – MEASUREMENT INSTRUMENT UNCERTAINTY	.36

45461523 R2.0 10 September 2019

Table of Figures

Figure A.1 – Test Setup Conducted Measurements Figure A.3 – Test Setup Radiated Emissions Measurements	32 33
Table of Plots	
Plot 7.1 – Radiated Field Strength – Lower Band Edge, Horizontal, Average Plot 7.2 – Radiated Field Strength – Lower Band Edge, Horizontal, Peak	
Plot 7.3 – Radiated Field Strength – Lower Band Edge, Vertical, Average	14
Plot 7.4 – Radiated Field Strength – Lower Band Edge, Vertical, Peak	
Plot 7.6 – Radiated Field Strength – Upper Band Edge, Horizontal, Peak	17
Plot 7.7 – Radiated Field Strength – Upper Band Edge, Vertical, Average	
Plot 8.1 – Lower Band Edge	22
Plot 8.1 – Upper Band Edge	23
Plot 9.1 – Radiated Spurious Emissions 30-1000Mhz, Horizontal	25
Plot 9.2 – Radiated Spurious Emissions 30-1000Mhz, Vertical	
Plot 9.3 – Radiated Spurious Emissions 1-3Ghz, Horizontal	
Plot 9.5 – Radiated Spurious Emissions 3-5Ghz, Horizontal	

45461523 R2.0

10 September 2019

Table of Tables

Table 7.1 – Summary of Radiated Field Strength	.20
Table 9.1 – Summary of Radiated Spurious Emissions	
Table A.1 – Setup - Conducted Measurements Equipment	
Table A.2 – Setup - Radiated Emissions Equipment	

45461523 R2.0

10 September 2019

1.0 DOCUMENT CONTROL

	Revision History						
San	nples Tested By:	ed By: Art Voss, P.Eng. Date(s) of Evaluation:		May 31 - June 13, 2019			
Rep	ort Prepared By:	Art Voss, P.Eng.	Re	port Reviewed By:	Ben Hewson		
Report	Desc	ription of Revision	Revised	Revised	Revision Date		
Revision			Section	Ву	institution but		
0.1	Draft Release		n/a	Art Voss	29 August 2019		
1.0	Initial Release		n/a	Art Voss	29 August 2019		
2.0	Corrected Plots 7.5, 7.6, ppg. 17,18		7.0	Art Voss	10 September 2019		
Corre		cted Table 7.1, pg. 20	7.0	AIL V055	To September 2019		

45461523 R2.0 10 September 2019

2.0 CLIENT AND DUT INFORMATION

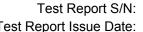
Client Information					
Applicant Name	Myriota Pty Ltd				
	Lot 14				
Applicant Address (FCC)	Frome Road				
	Adelaide, Australia 5000				
	Myriota Canada Inc.				
Applicant Address (ISED)	c/o PwC Law LLP				
Applicant Address (ISLD)	18 York Street, Suite 2500-C				
	Toronto, ON, M5J 0B2				
	DUT Information				
Device Identifier(s):	FCC ID: 2ATKL-SL2-1				
Device identifier(3).	IC: 25148-SL21				
Device Type:	Asset Tracking Device				
Equipment Class (FCC):	Low Power Communication Device Transmitter (DXX)				
Equipment Class (ISED):	Low Power Transmitter General Field Limits above 30 MHz				
Device Model(s) / HVIN:	SL2-1				
Device Marketing Name / PMN:	Sense&Locate				
Firmware Version ID Number / FVIN:	n/a				
Host Marketing Name / HMN:	n/a				
Test Sample Serial No.:	T/A Sample - Identical Prototype				
Transmit Frequency Range:	433.5 - 434.5MHz				
Number of Channels:	n/a				
Manuf. Max. Rated Output Power:	0.5W				
Manuf. Max. Rated BW/Data Rate:	7kHz				
Antenna Make and Model:	n/a				
Antenna Type and Gain:	Dipole - Helical Coil w/ Ground Plane, -2.5dBi (UHF)				
Modulation:	MSK				
Mode:	n/a				
Emission Designator:	n/a				
DUT Power Source:	3.6VDC Alkaline				
Deviation(s) from standard/procedure:	None				
Modification of DUT:	None				

45461523 R2.0

10 September 2019

3.0 SCOPE

This Certification Report was prepared on behalf of:


Myriota Pty Ltd

"(the 'Applicant"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the 'Rules'). The scope of this investigation was limited to only the equipment, devices and accessories (the 'Equipment') supplied by the Applicant. The tests and measurements performed on this Equipment were only those set forth in the applicable Rules and/or the Test and Measurement Standards they reference. The Rules applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable Rules were applied to the measurement results obtained during this evaluation and "unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurements performed on only the Equipment tested during this evaluation. Where applicable and permissible, information including test and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

As per FCC 47 CFR Part §2.1091 and §2.1093, an RF Exposure evaluation report is required for this *Equipment* and the results of the RF Exposure evaluation appear in a separate exhibit from this report.

The Receiver of this *Equipment* is subject to Equipment Certification or Supplier's Declaration of Conformity (SDoC) in accordance with 47 CFR Part §15.101. The Receiver was evaluated in accordance with 47 CFR Part §15 Subpar B and ICES-003. A statement of the application of the SDoC procedure appears in a separate exhibit from this report.

Application: This is an application for a new FCC and ISED certification.

45461523 R2.0

10 September 2019

	TEST SUMMARY							
Section	Description of Test	Procedure Ap		Applicable Rule	Test	Result		
	20001, p. 1001	Reference	Part(s) FCC	Part(s) ISED	Date			
7.0	Field Strength (Fundamental)	ANSI C63.10-2013	§2.1046	RSS-Gen	12 June 2019	Complies		
7.0 Field Strength (Fundamental)		ANSI C03. 10-2013	§15.240	RSS-210 Annex D	12 June 2019	Complies		
8.0	Band Edge	ANSI C63.10-2013	§15.215		13 June 2019	Complies		
9.0 Radiated TX Spurious Emissions		ANSI C63.10-2013	§15.240(c)	RSS-Gen	13 June 2019	Complies		
3.0		, 333.10 2010	§15.209	RSS-210 Annex D	.5 526 2010	Complies		

Test Station Day Log						
Data	Ambient	Relative	Barometric	Test	Tests	
Date	Temp (°C)	Humidity (%)	Pressure (kPa)	Station	Performed Section(s)	
31 May 2019	28.6	14	101.7	SAC	9	
31 May 2019	29.6	13	101.1	OATS	9	
3 June 2019	25.1	31	101.1	OATS	9	
3 June 2019	23.6	16	101.1	EMC	8	
12 June 2019	25.4	18	101.9	OATS	7	
13 June 2019	27.0	43	100.7	OATS	9	

EMC - EMC Test Bench SAC - Semi-Anechoic Chamber

OATS - Open Area Test Site TC - Temperature Chamber

LISN - LISN Test Area ESD - ESD Test Bench

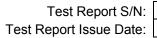
IMM - Immunity Test Area RI - Radiated Immunity Chamber

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client w hich w ere not adjusted, modified or altered in any manner w hatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

Art Voss, P.Eng. Technical Manager Celltech Labs Inc.

29 August 2019

Date

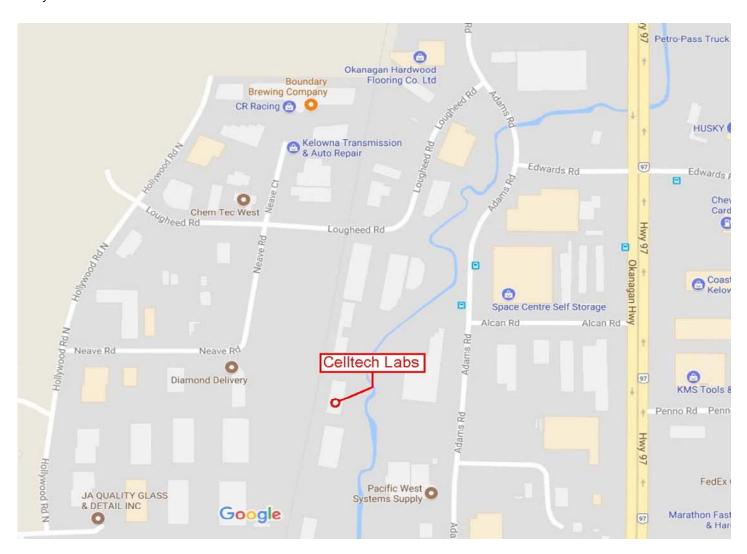


45461523 R2.0 10 September 2019

5.0 NORMATIVE REFERENCES

	Normative References
ISO/IEC 17025:2017	General requirements for the competence of testing and calibration laboratories
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of
	Unlicensed Wireless Devices
CFR	Code of Federal Regulations
Title 47:	Telecommunication
Part 2:	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
CFR	Code of Federal Regulations
Title 47:	Telecommunication
Part 15:	Radio Fequency Devices
Subpart C:	Intentional Radiators
ISED	Innovation, Science and Economic Development Canada
	Spectrum Management and Telecommunications Radio Standards Specification
RSS-Gen Issue 5:	General Requirements and Information for the Certification of Radiocommunication Equipment
ISED	Innovation, Science and Economic Development Canada
	Spectrum Management and Telecommunications Radio Standards Specification
RSS-210 Issue 9:	Licence-Exempt Radio Apparatus: Category I Equipment

45461523 R2.0


10 September 2019

6.0 FACILITIES AND ACCREDITATIONS

Facility and Accreditation:

The facilities used to evaluate this device outlined in this report are located at 21-364 Lougheed Road, Kelowna, British Columbia, Canada V1X7R8. The radiated emissions site (OATS) conforms to the requirements set forth in ANSI C63.4 and is filed and listed with the FCC under Test Firm Registration Number CA3874 and Innovation, Science and Economic Development Canada under Test Site File Number ISED 3874A-1. Celltech is accredited to ISO 17025, through accrediting body A2LA and with certificate 2470.01.

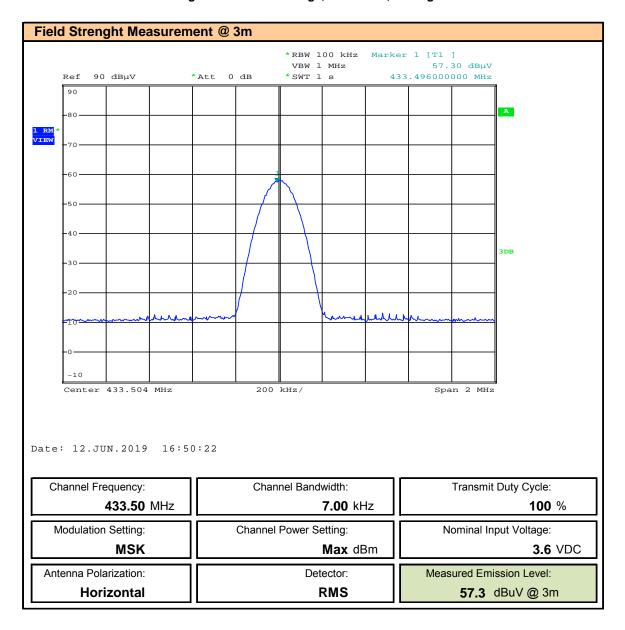
45461523 R2.0

10 September 2019

7.0 RADIATED FIELD STRENGTH

Test Procedure	
Normative	FCC 47 CFR §2.1046, §15.240, RSS-Gen (6.12), RSS-210
Reference	ANSI C63.10
Limits	
47 CFR §15.240	Operation in the band 433.5-434.5 MHz.
	(b) The field strength of any emissions radiated within the specified frequency band shall not exceed 11,000 microvolts per meter measured at a distance of 3 meters. The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The peak level of any emissions within the specified frequency band shall not exceed 55,000 microvolts per meter measured at a distance of 3 meters.
RSS-210	Annex D - Radio Frequency Identification (RFID) Devices in the Band 433.5-434.5 MHz (b) The field strength of any emissions radiated within the band 433.5-434.5 MHz shall not exceed 11,000 µV/m measured at 3 m with an average detector. The peak level of any emission within this specified frequency band shall not exceed 55,000 µV/m measured at 3m
Test Setup	Appendix A - Figure A2

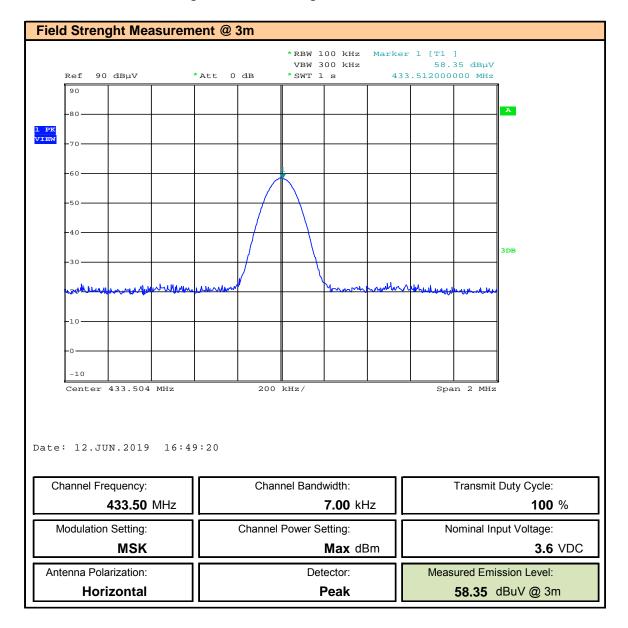
Measurement Procedure


The DUT was place on an 80cm turntable on an Open Area Test Site (OATS) at a test distance of 3m. The output power of the DUT was set to the manufacturer's highest output power setting. The DUT was set to transmit at its maximum Duty Cycle. Emissions were evaluated while the DUT was rotated from 0° through 360° with the receive antenna elevated from 1 to 4 meters in both horizontal and vertical polarizations.

45461523 R2.0

10 September 2019

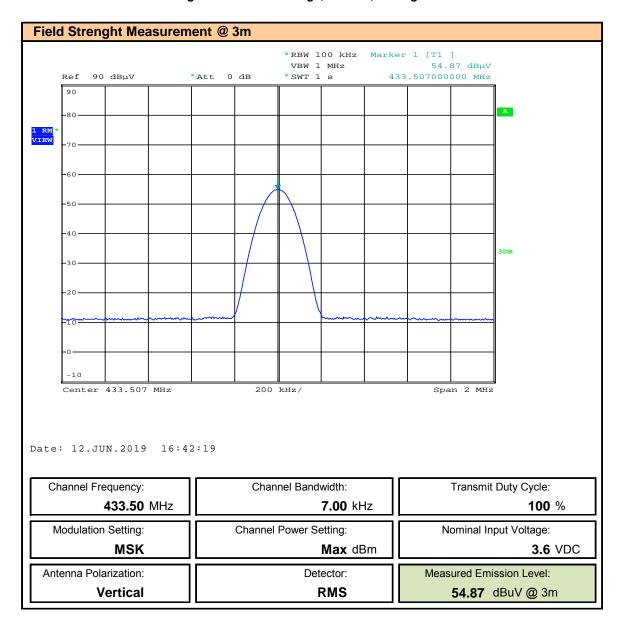
Plot 7.1 - Radiated Field Strength - Lower Band Edge, Horizontal, Average



45461523 R2.0

10 September 2019

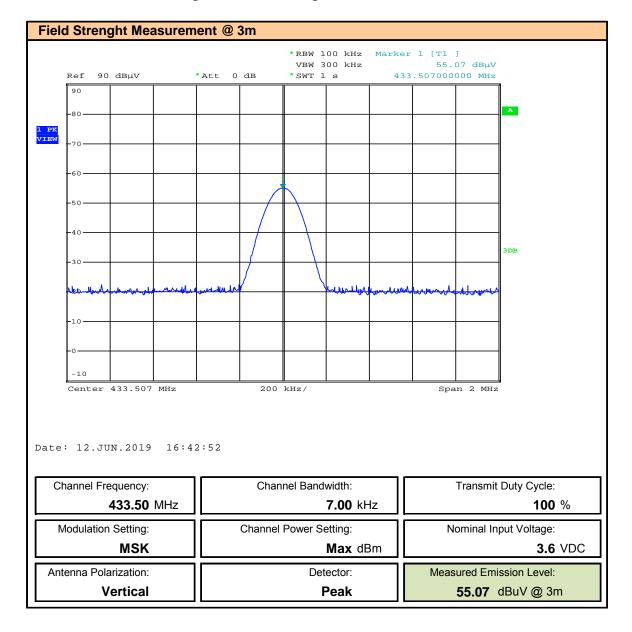
Plot 7.2 - Radiated Field Strength - Lower Band Edge, Horizontal, Peak



45461523 R2.0

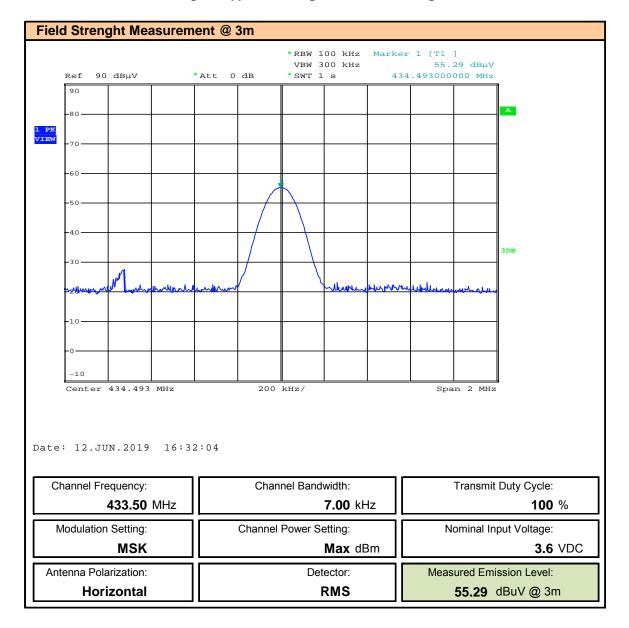
10 September 2019

Plot 7.3 - Radiated Field Strength - Lower Band Edge, Vertical, Average

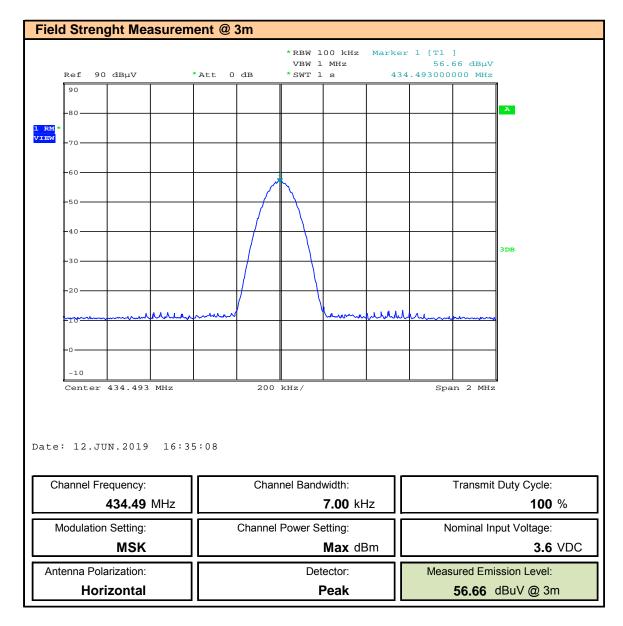


45461523 R2.0

10 September 2019

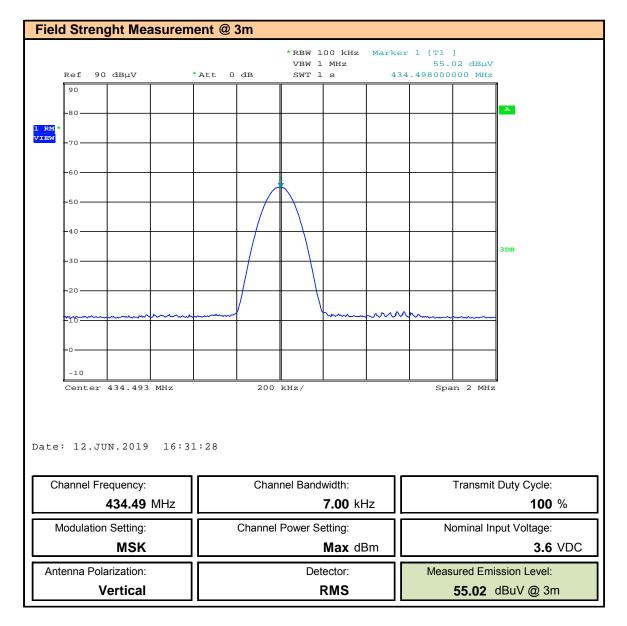

Plot 7.4 - Radiated Field Strength - Lower Band Edge, Vertical, Peak

45461523 R2.0 10 September 2019


Plot 7.5 - Radiated Field Strength - Upper Band Edge, Horizontal, Average

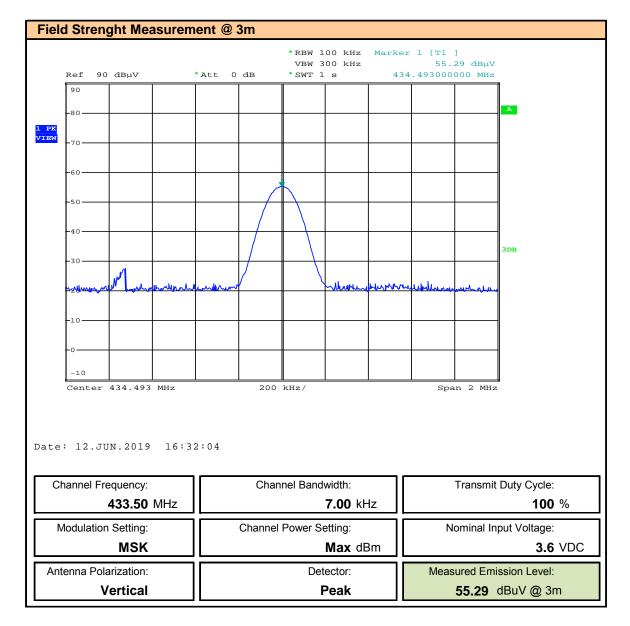
45461523 R2.0 10 September 2019

Plot 7.6 - Radiated Field Strength - Upper Band Edge, Horizontal, Peak



45461523 R2.0

10 September 2019


Plot 7.7 - Radiated Field Strength - Upper Band Edge, Vertical, Average

45461523 R2.0 10 September 2019

Plot 7.8 - Radiated Field Strength - Upper Band Edge, Vertical, Peak

45461523 R2.0

10 September 2019

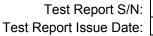
Table 7.1 – Summary of Radiated Field Strength

Frequency	BW	Modulation	Power	Transmit Duty Cycle	Polarization	Measured Emission	Cable Loss	Antenna Correction Factor	Field Strength	Field Strength Limit	Field Strength Limit	Margin
(MHz)	(kHz)		(dBm)	(%)		[E _{MEAS}] (dBuV @ 3m)	[L _c] (dB)	[AFC] (dB)	[E] (dBuV/m@3m)	[E _L] (uV/m)	[E _L] (dBuV/m)	(dBm)
						Average (RMS) Measurem	ent				
433.504	7	MSK	Max	100	Horizontal	57.30	1.25	22.00	80.55		80.83	0.28
433.504	7	MSK	Max	100	Vertical	54.87	1.25	22.00	78.12	11000.00	80.83	2.71
434.493	7	MSK	Max	100	Horizontal	55.29	1.25	22.00	78.54		80.83	2.29
434.493	7	MSK	Max	100	Vertical	55.02	1.25	22.00	78.27		80.83	2.56
						Peak Mea	asurement					
433.504	7	MSK	Max	100	Horizontal	58.35	1.25	22.00	81.60		94.81	13.21
433.504	7	MSK	Max	100	Vertical	55.07	1.25	22.00	78.32	55000.00	94.81	16.49
434.493	7	MSK	Max	100	Horizontal	56.66	1.25	22.00	79.91		94.81	14.90
434.493	7	MSK	Max	100	Vertical	55.29	1.25	22.00	78.54		94.81	16.27
									Result:		Comp	lies

 $E = E_{MEAS} + L_{C} + AFC$ $Margin = E_{L} - E$

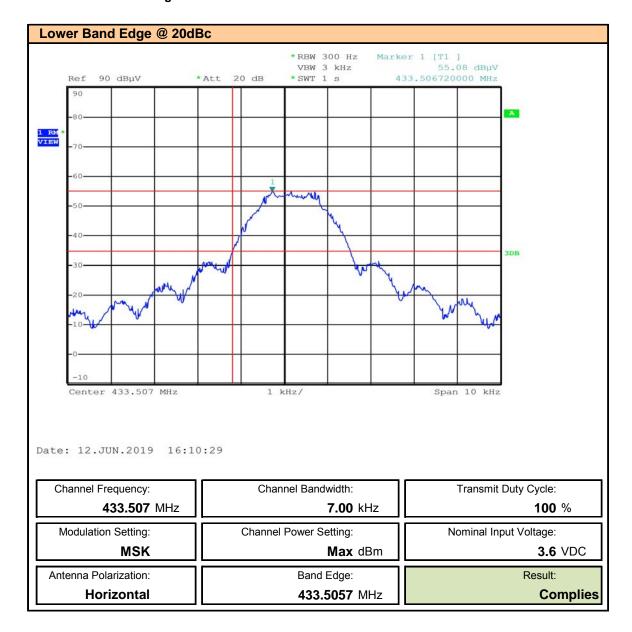
A Negative Margin (-) indicates non-compliance

45461523 R2.0

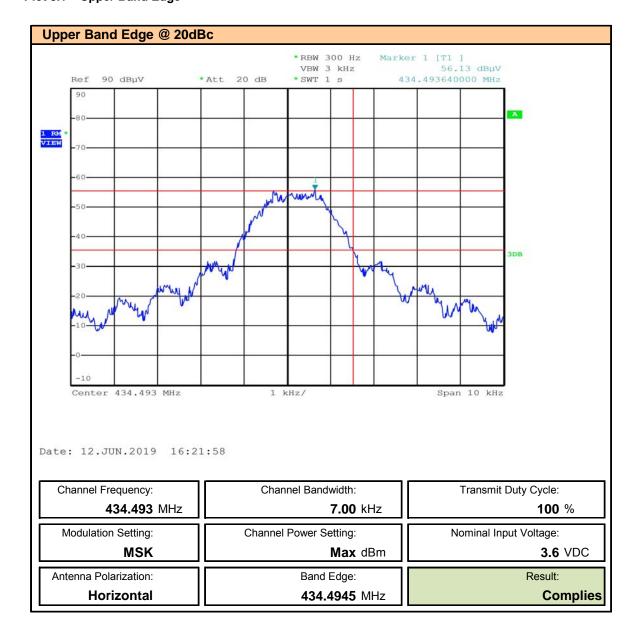

10 September 2019

8.0 BAND EDGE EVALUATION

Test Procedure	
Normative	FCC 47 CFR §2.1046, §15.215
Reference	ANSI C63.10
Limits	
47 CFR §15.215	Additional provisions to the general radiated emission limitations.
	(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Setup	Appendix A - Figure A.1


Measurement Procedure

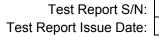
The DUT was place on an 80cm turntable on an Open Area Test Site (OATS) at a test distance of 3m. The output power of the DUT was set to the manufacturer's highest output power setting. The DUT was set to transmit at its maximum Duty Cycle. Emissions were evaluated while the DUT was rotated from 0° through 360° with the receive antenna elevated from 1 to 4 meters in both horizontal and vertical polarizations.



Plot 8.1 - Lower Band Edge

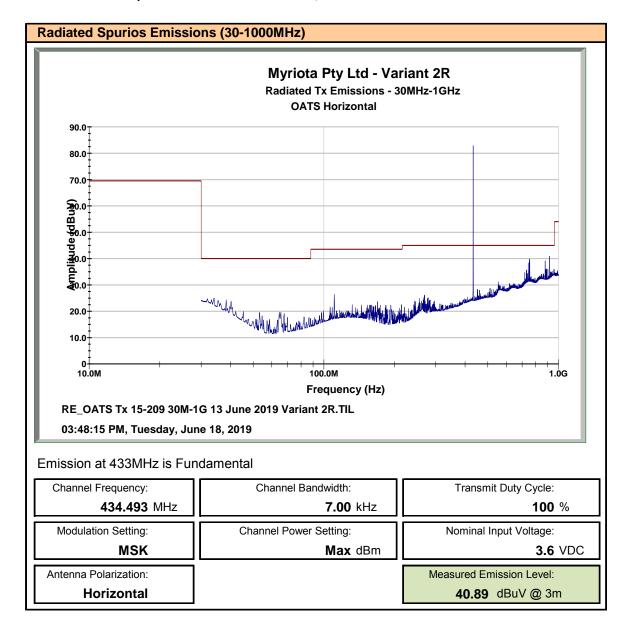
Test Report S/N: Test Report Issue Date:

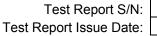
45461523 R2.0


10 September 2019

9.0 RADIATED OUT OF BAND SPURIOUS EMISSIONS

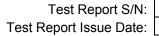
Test Procedure	
Normative	FCC 47 CFR §2.1046, §15.240, RSS-Gen (6.12), RSS-210
Reference	ANSI C63.10
Limits	
47 CFR §15.240	Operation in the band 433.5-434.5 MHz.
	(c) The field strength of emissions radiated on any frequency outside of the specified band shall not exceed the general radiated emission limits in §15.209.
RSS-210	Annex D - Radio Frequency Identification (RFID) Devices in the Band 433.5-434.5 MHz
	(c) The field strength of emissions on any frequencies outside this specified band shall not exceed the general field strength limits specified in RSS-Gen.
Test Setup	Appendix A - Figure A.2


Measurement Procedure

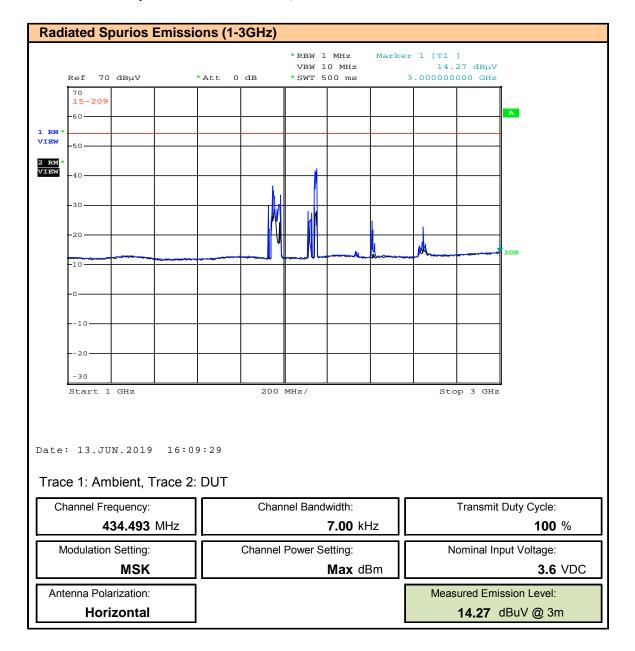

The DUT was place on an 80cm turntable on an Open Area Test Site (OATS) at a test distance of 3m. The output power of the DUT was set to the manufacturer's highest output power setting. The DUT was set to transmit at its maximum Duty Cycle. Emissions were evaluated while the DUT was rotated from 0° through 360° with the receive antenna elevated from 1 to 4 meters in both horizontal and vertical polarizations.

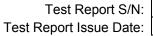
Celtech
Testing and Engineering Services Lab

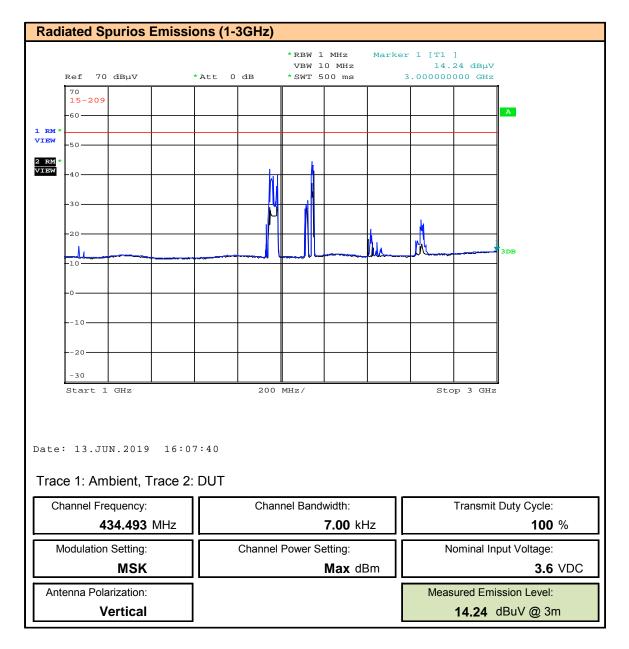
Plot 9.1 - Radiated Spurious Emissions 30-1000Mhz, Horizontal

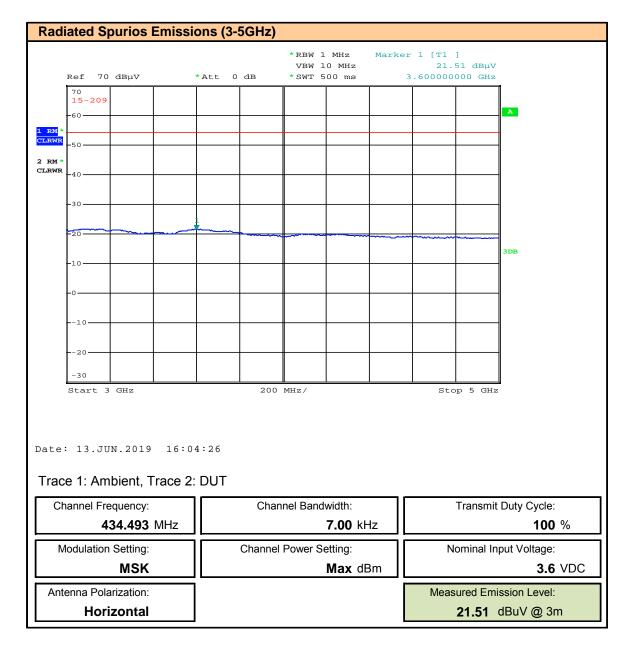


Celltech
Testing and Engineering Services Lab


Plot 9.2 - Radiated Spurious Emissions 30-1000Mhz, Vertical

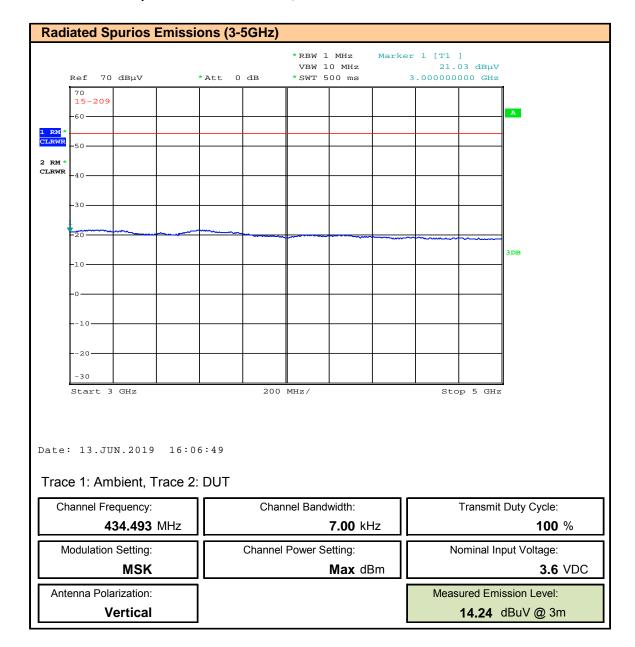



Plot 9.3 - Radiated Spurious Emissions 1-3Ghz, Horizontal


Plot 9.4 - Radiated Spurious Emissions 1-3Ghz, Vertical

45461523 R2.0 10 September 2019

Plot 9.5 - Radiated Spurious Emissions 3-5Ghz, Horizontal



45461523 R2.0

10 September 2019

Plot 9.6 - Radiated Spurious Emissions 3-5Ghz, Vertical

45461523 R2.0

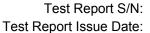
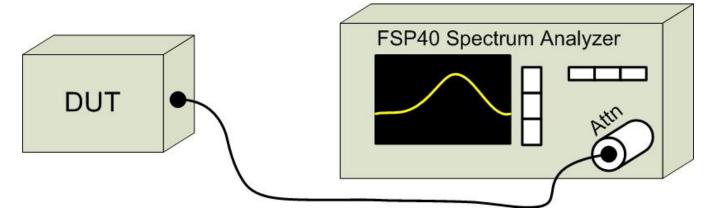

10 September 2019

Table 9.1 - Summary of Radiated Spurious Emissions

Radiated Spurious Emissions									
Emission				Transmit		Measured	Corrected		
Frequency	BW	Modulation	Power	Duty Polariza	Polarization	Emission	Emission Limit	Limit	Margin
			Setting	Cycle					
(MHz)	(kHz)		(dBm)	(%)		(dBuV/m @ 3m)	(dBuV/m @ 3m)	(dBuV)	(dBm)
916.7**	7	MSK	Max	100	Horizontal	40.89	40.89	46.00	5.11
927.2**	7	MSK	Max	100	Vertical	41.88	41.88	46.00	4.12
3000*	7	MSK	Max	100	Horizontal	14.27	44.36	54.00	9.64
3000*	7	MSK	Max	100	Vertical	14.24	44.33	54.00	9.67
3600*	7	MSK	Max	100	Horizontal	21.51	52.70	54.00	1.30
3000*	7	MSK	Max	100	Vertical	21.03	51.12	54.00	2.88
Result:					Complies				

^{*} Noise Floor

^{**} Measurement automatically corrected for Antenna Correction Factor and Cable Loss



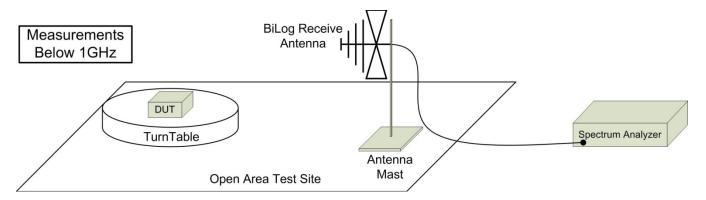
APPENDIX A – TEST SETUP DRAWINGS AND EQUIPMENT

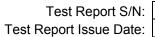
Table A.1 – Setup - Conducted Measurements Equipment

	Equipment List					
Asset Number	Manufacturer	Model Number	Description			
00241	R&S	FSU40	Spectrum Analyzer			

Figure A.1 – Test Setup Conducted Measurements

45461523 R2.0 10 September 2019


Table A.2 - Setup - Radiated Emissions Equipment


Equipm	Equipment List					
Asset Number	Manufacturer	Model Number	Description			
00051	HP	8566B	Spectrum Analyzer			
00049	HP	85650A	Quasi-peak Adapter			
00047	HP	85685A	RF Preselector			
00072	EMCO	2075	Mini-mast			
00073	EMCO	2080	Turn Table			
00071	EMCO	2090	Multi-Device Controller			
00265	Miteq	JS32-00104000-58-5P	Microwave L/N Amplifier			
00241	R&S	FSU40	Spectrum Analyzer			
00050	Chase	CBL-6111A	Bilog Antenna			
00275	Coaxis	LMR400	25m Cable			
00276	Coaxis	LMR400	4m Cable			
00278	TILE	34G3	TILE Test Software			
00034	ETS	3115	Double Ridged Guide Horn			

CNR: Calibration Not Required

COU: Calibrate On Use

Figure A.3 – Test Setup Radiated Emissions Measurements

45461523 R2.0

10 September 2019

APPENDIX B - EQUIPMENT LIST AND CALIBRATION

Equ	uipment	List						
/*\	Asset	Manufacturer	Model	Serial	Description	Last	Calibration	Calibration
(*)	Number	Number Number		Number Description		Calibrated	Interval	Due
*	00050	Chase	CBL-6111A 1607		Bilog Antenna	3 Jan 2019	Triennial	3 Jan 2022
*	00034	ETS	3115	6267	Double Ridged Guide Horn	26 Nov 2018	Triennial	26 Nov 2021
	00035	ETS	3115	6276	Double Ridged Guide Horn	22 Mar 2019	Triennial	21 Mar 2022
*	00085	EMCO	6502	9203-2724	Loop Antenna	11 Jun 2019	Triennial	11 Jun 2022
*	00161	Waveline Inc.	889		Standard Gain Horn 18-26GHz	NCR	n/a	NCR
	00162	Waveline Inc.	889		Standard Gain Horn 18-26GHz	NCR	n/a	NCR
	00163	Waveline Inc.	1099		Standard Gain Horn 26-40GHz	NCR	n/a	NCR
	00164	Waveline Inc.	1099		Standard Gain Horn 26-40GHz	NCR	n/a	NCR
*	00165	Waveline Inc.	801-KF		Waveguide Adapter 18-26GHz	NCR	n/a	NCR
	00166	Waveline Inc.	801-KF		Waveguide Adapter 18-26GHz	NCR	n/a	NCR
	00167	Waveline Inc.	1001-KF		Waveguide Adapter 26-40GHz	NCR	n/a	NCR
	00168	Waveline Inc.	1001-KF		Waveguide Adapter 26-40GHz	NCR	n/a	NCR
*	00047	HP	85685A	2837A00826	RF Preselector	23 Jun 2017	Triennial	23 Jun 2020
*	00047	HP	85650A	2043A00162	Quasi-peak Adapter	23 Jun 2017	Triennial	23 Jun 2020
*	00043	HP	8566B	2747A05510	Spectrum Analyzer	23 Jun 2017	Triennial	23 Jun 2020
	00031	HP	8901A	3749A07154	Modulation Analyzer	27 Dec 2017	Triennial	27 Dec 2020
	00223	HP	8903B	3749A07134 3729A18691	· ·	28 Dec 2017	Triennial	28 Dec 2020
*	00224				Audio Analyzer			
*		R&S	FSU40	100500	Spectrum Analyzer	15 May 2018	Triennial	15 May 2021
	00005	HP	8648D	3847A00611	Signal Generator	21 Jun 2017	Triennial	21 Jun 2020
	00006	R&S	SMR20	100104	Signal Generator	29 May 2017	Triennial	29 May 2020
	00243	Rigol	DS1102E	DS1ET150502164	Oscilloscope	7 Nov 2017	Triennial	7 Nov 2020
	00254	LeCroy	WM8600A	532	Oscilloscope	NCR	n/a	NCR
	00110	Gigatronics	8652A	1875801	Power Meter	26 Mar 2019	Triennial	26 Mar 2022
	00237	Gigatronics	80334A	1837001	Power Sensor	26 Mar 2019	Triennial	26 Mar 2022
	00232	ETS Lindgren	HI-6005	91440	Isotropic E-Field Probe	18 Dec 2017	Triennial	18 Dec 2020
	00003	HP	53181A	3736A05175	Frequency Counter	21 Jun 2017	Triennial	21 Jun 2020
	00257	Com-Power	LI-215A	191934	LISN	5 Jan 2018	Triennial	5 Jan 2021
	00041	AR	10W1000C	27887	Power Amplifier	NCR	n/a	NCR
	00106	AR	5SIG4	26235	Power Amplifier	NCR	n/a	NCR
	00280	AR	25A250AM6	22702	Power Amplifier	NCR	n/a	NCR
*	00265	Miteq	JS32-00104000-58-5P	1939850	Microwave L/N Amplifier	COU	n/a	COU
	00071	EMCO	2090	9912-1484	Multi-Device Controller	n/a	n/a	n/a
*	00072	EMCO	2075	0001-2277	Mini-mast	n/a	n/a	n/a
*	00073	EMCO	2080	0002-1002	Turn Table	n/a	n/a	n/a
	00081	ESPEC	ECT-2	0510154-B	Environmental Chamber	NCR	n/a	CNR
*	00234	WR	61161-378	140320430	Temp/Humidity Meter	New	Triennial	New
	00236	Nokia	-	236	ESD Table	NCR	n/a	NCR
	00255	Expert ESD	A4001	A4001-155	ESD Target	COU	n/a	COU
	00064	NARDA	3020A	n/a	Bi-Directional Coupler	COU	n/a	COU
	00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable	COU	n/a	COU
*	00263B	Koaxis	KP10-1.00M-TD	263B	1m Armoured Cable	COU	n/a	COU
*	00264	Koaxis	KP10-7.00M-TD	264	7m Armoured Cable	COU	n/a	COU
*	00275	TMS	LMR400	n/a	25m Cable	COU	n/a	COU
*	00276	TMS	LMR400	n/a	4m Cable	COU	n/a	COU
*	00270	TMS	LMR400	n/a	4m Cable	COU	n/a	COU
*	00277	TILE	34G3	n/a	TILE Test Software	NCR	n/a	NCR
	ted Equi		0700	11/4	TILL TOST GOTTWATE	NOK	11/4	INCK
1101	Leu Lyui	pinent .						
* 1 1-	od durina	the course of	this investigation					L

* Used during the course of this investigation

NCR: No Calibration Required COU: Calibrate On Use

45461523 R2.0

10 September 2019

45461523 R2.0

10 September 2019

APPENDIX C – MEASUREMENT INSTRUMENT UNCERTAINTY

	CISPR 16-4 Measurement Uncertainty (U _{LAB})					
Th	This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence interval using a coverage factor of k=2					
	30MHz - 200MHz					
	$U_{LAB} = 5.14dB$ $U_{CISPR} = 6.3dB$					
	200MHz - 1000MHz					
	$U_{LAB} = 5.90dB$ $U_{CISPR} = 6.3dB$					
	1GHz - 6GHz					
	U _{LAB} = 4.80dB					
	6GHz - 18GHz					
	$U_{LAB} = 5.1 dB$ $U_{CISPR} = 5.5 dB$					
	If the calculated uncertainty U _{lab} is less than U _{CISPR} then:					
1	Compliance is deemed to occur if NO measured disturbance exceeds the disturbance limit					
2	Non-Compliance is deemed to occur if ANY measured disturbance EXCEEDS the disturbance limit					
	If the calculated uncertainty \mathbf{U}_{lab} is $\mathbf{greater}$ than \mathbf{U}_{CISPR} then:					
3	3 Compliance is deemed to occur if NO measured disturbance, increased by (U _{lab} - U _{CISPR}), exceeds the disturbance limit					
4	4 Non-Compliance is deemed to occur if ANY measured disturbance, increased by (U _{lab} - U _{CISPR}), EXCEEDS the disturbance limit					