TEST REPORT

	Dt&C Co., Ltd.
Dt&C 42, Yurim-ro,	154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664
1. Report No : DRTFCC2403-0036	
2. Customer	
• Name: KC industrial Co.,Ltd.	
• Address: 19F, 534, Teheran-ro, Gangnam-gu, S	eoul South Korea
3. Use of Report : FCC Certification	
4. Product Name / Model Name : UHF RFID READE	R / R-5710
FCC ID : 2ARHHR5710	
5. FCC Regulation(s): Part 15.247	
Test Method used: ANSI C63.10-2013, KDB 55807	/4D01v05r02
6. Date of Test : 2024.03.15 ~ 2024.03.18	
7. Location of Test : 🛛 Permanent Testing Lab	On Site Testing
8. Testing Environment : See appended test report.	
9. Test Result : Refer to the attached test result.	
The results shown in this test report refer only to the This test report is not related to KOLAS accreditation	
Tested by	Technical Manager
Affirmation Name : SeokHo Han	ature) Name : JaeJin Lee (Signature)
2024 .	03.29.
Dt&C	Co., Ltd.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2403-0036	Mar. 29, 2024	Initial issue	SeokHo Han	JaeJin Lee

Table of Contents

1. General Information	4
1.1. Description of EUT	4
1.2. Declaration by the manufacturer	4
1.3. Testing Laboratory	
1.4. Testing Environment	5
1.5. Measurement Uncertainty	
1.7. Test Equipment List	
1.8. Conclusion of worst-case and operation mode	
2. Antenna Requirement	
3. Summary of Test Results	9
4. Maximum Peak Output Power Measurement	. 10
4.1. Test Setup	.10
4.2. Limit	
4.3. Test Procedure	
4.4. Test Results	
5. 20dB BW	
5.1. Test Setup	
5.2. Limit	
5.3. Test Procedure	.13
5.4. Test Results	.13
6. Carrier Frequency Separation	. 16
6.1. Test Setup	
6.2. Limit	
6.3. Procedure	
6.4. Test Results	
7. Number of Hopping Frequencies	
7.1. Test Setup	
7.2. Limit	
7.3. Procedure	
7.4. Test Results	
8. Time of Occupancy (Dwell Time)	
8.1. Test Setup	
8.2. Limit	
8.3. Test Procedure	
8.4. Test Results	-
9. Unwanted Emissions	
9.1. Test Setup	
9.2. Limit	
9.3. Test Procedures	.23
9.3.1. Test Procedures (Radiated)	.23
9.3.2. Test Procedures (Conducted)	24
9.4. Test Results	
9.4.1. Unwanted Emission (Radiated)	
9.4.2. Unwanted Emissions (Conducted)	
10. AC Power Line Conducted Emission	
10.1. Test Setup	
10.2. Limit	
10.3. Test Procedures	
10.4. Test Results	
	. 38

1. General Information

1.1. Description of EUT

Equipment Class	Part 15 Spread Spectrum Transmitter (DSS)	
Product Name	UHF RFID READER	
Model Name	R-5710	
Add Model Name	-	
Firmware Version Identification Number	9.1.0.8	
EUT Serial Number	NA	
Power Supply	DC: 7.26 V	
Frequency Range	902.75 - 927.25 MHz	
Modulation Type	ASK	
Number of Channels	50(Channel Spacing: 500kHz)	
Antenna Type	CIRCULARLY POLARIZED ANTENNA	
Antenna Gain	PK : 0 dBi	

1.2. Declaration by the manufacturer

- N/A

1.3. Testing Laboratory

Dt&C Co., Lt	d.	
The 3 m test si	te and	conducted measurement facility used to collect the radiated data are located at the
42, Yurim-ro, 1	54beor	n-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.
	•	with the requirements of Part 2.948 according to ANSI C63.4-2014. esignation No. : KR0034
- ISED#: 57	40A	
www.dtnc.net		
Telephone	:	+ 82-31-321-2664
FAX	:	+ 82-31-321-1664

1.4. Testing Environment

Ambient Condition	
Temperature	+20 °C ~ +22 °C
 Relative Humidity 	+39 % ~ +42 %

1.5. Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Measurement uncertainty
Antenna-port conducted emission	0.9 dB (The confidence level is about 95 %, $k = 2$)
AC power-line conducted emission	3.4 dB (The confidence level is about 95 %, k = 2)
Radiated emission (1 GHz Below)	5.0 dB (The confidence level is about 95 %, k = 2)
Radiated emission (1 GHz ~ 18 GHz)	4.8 dB (The confidence level is about 95 %, k = 2)
Radiated emission (18 GHz Above)	5.7 dB (The confidence level is about 95 %, k = 2)

1.7. Test Equipment List

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	23/12/15	24/12/15	MY50110097
Spectrum Analyzer	Agilent Technologies	N9020A	23/12/15	24/12/15	MY48010133
Spectrum Analyzer	Agilent Technologies	N9020A	23/06/23	24/06/23	US47360812
DC Power Supply	H.P	66332A	23/12/15	24/12/15	US37471368
Multimeter	FLUKE	17B+	23/12/15	24/12/15	36390701WS
Signal Generator	Rohde Schwarz	SMBV100A	23/12/15	24/12/15	255571
Signal Generator	ANRITSU	MG3695C	23/12/15	24/12/15	173501
Thermohygrometer	BODYCOM	BJ5478	23/12/15	24/12/15	120612-1
Thermohygrometer	BODYCOM	BJ5478	23/12/15	24/12/15	120612-2
Thermohygrometer	BODYCOM	BJ5478	23/06/23	24/06/23	N/A
Loop Antenna	ETS-Lindgren	6502	23/11/09	24/11/09	00060496
Hybrid Antenna	Schwarzbeck	VULB 9160	23/12/15	24/12/15	3362
Horn Antenna	ETS-Lindgren	3117	23/06/23	24/06/23	00143278
PreAmplifier	tsj	MLA-0118-B01-40	23/12/15	24/12/15	1852267
PreAmplifier	H.P	8447D	23/12/15	24/12/15	2944A07774
Band Reject Filter	Wainwright Instruments	WRCT800/960.0-2/40- 8SSK	23/06/23	24/06/23	32
High Pass Filter	Wainwright Instruments	WHKX12-935-1000- 15000-40SS	23/06/23	24/06/23	8
High Pass Filter	Wainwright Instruments	WHKX10-2838-3300- 18000-60SS	23/06/23	24/06/23	1
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5-6SS	23/06/23	24/06/23	3
Attenuator	Hefei Shunze	SS5T2.92-10-40	23/06/23	24/06/23	16012202
Attenuator	Aeroflex/Weinschel	56-3	23/06/23	24/06/23	Y2370
Attenuator	SMAJK	SMAJK-2-3	23/06/23	24/06/23	3
Attenuator	SMAJK	SMAJK-2-3	23/06/23	24/06/23	2
Attenuator	Aeroflex/Weinschel	86-10-11	23/06/23	24/06/23	408
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2488B MA2472A	23/06/23	24/06/23	0910025 001872
EMI Test Receiver	ROHDE&SCHWARZ	ESR7	24/01/29	25/01/29	100910
PULSE LIMITER	Rohde Schwarz	ESH3-Z2	23/08/21	24/08/21	101333
LISN	SCHWARZBECK	NSLK 8128 RC	23/10/26	24/10/26	8128 RC-387
Cable	DT&C	Cable	23/01/03	24/01/03	G-2
Cable	HUBER+SUHNER	SUCOFLEX 100	23/01/03	24/01/03	G-3
Cable	DT&C	Cable	23/01/03	24/01/03	G-4
Cable	OMT	YSS21S	23/01/03	24/01/03	G-5
Cable	Junkosha	MWX241	23/01/03	24/01/03	mmW-1
Cable	Junkosha	MWX241	23/01/03	24/01/03	mmW-4
Cable	HUBER+SUHNER	SUCOFLEX100	23/01/03	24/01/03	M-01
Cable	HUBER+SUHNER	SUCOFLEX100	23/01/03	24/01/03	M-02
Cable	JUNFLON	MWX241	23/01/03	24/01/03	M-03
Cable	JUNFLON	J12J101757-00	23/01/03	24/01/03	M-07
Cable	HUBER+SUHNER	SUCOFLEX106	23/01/03	24/01/03	M-09
Cable	DT&C	Cable	23/01/03	24/01/03	RFC-69
Test Software	tsj	Noise Terminal Measurement	NA	NA	Version 2.00.0190
Test Software	tsj	Radiated Emission Measurement	NA	NA	Version 2.00.0185

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017. Note2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

1.8. Conclusion of worst-case and operation mode

Tested frequency information,

- Hopping Function: Enable

	TX Frequency (MHz) RX Frequency (MHz)	
Hopping Band	902.75 ~ 927.25 MHz	902.75 ~ 927.25 MHz

- Hopping Function: Disable

Channel	TX Frequency (MHz)	RX Frequency (MHz)
Lowest Channel	902.75	902.75
Middle Channel	915.25	915.25
Highest Channel	927.25	927.25

Operation test setup for EUT

- Test Software Version: RFID_TCM_1.0.0.1
- Power setting: 29 dBm

2. Antenna Requirement

According to FCC 47 CFR §15.203

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

The antenna is attached on the device by means of unique connector. Therefore this E.U.T complies with the requirement of Part 15.203

3. Summary of Test Results

FCC Part	Parameter	Limit (Using in 902-928 MHz)	Test Condition	Status Note 1
	Carrier Frequency Separation	>= 25 kHz or >= 20 dB BW, whichever is greater.		С
15.247(a)	Number of Hopping Frequencies	>= 50 hops, if 20 dB BW < 250kHz >= 25 hops, if 20 dB BW >= 250kHz	-	С
	20 dB Bandwidth	< 500 kHz		С
	Dwell Time	=< 0.4 seconds		С
15.247(b)	Transmitter Output Power	For FCC =< 1 Watt , if CHs >= 50 =< 0.25 W, if CHs >= 25, < 50	Conducted	С
15.247(d)	Unwanted Emissions (Conducted)	The radiated emission to any 100 kHz of out-band shall be at least 20 dB below the highest in-band spectral density.		С
15.247(d) 15.205 15.209	Unwanted Emissions (Radiated)	FCC 15.209 Limits (Reference to section 9)	Radiated	C ^{Note2}
15.207	AC Power Line Conducted Emissions	FCC 15.207 Limits (Reference to section 10)	AC Line Conducted	С
15.203	Antenna Requirements	FCC 15.203 (Reference to section 2)	-	С

4. Maximum Peak Output Power Measurement

4.1. Test Setup

Refer to the APPENDIX I.

4.2. Limit

FCC Requirements

The maximum peak output power of the intentional radiator shall not exceed the following :

 §15.247(b)(2), For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

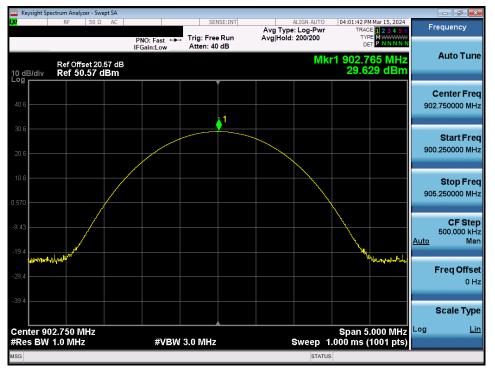
4.3. Test Procedure

- 1. The RF output power was measured with a spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.
- 2. The peak output power of the fundamental frequency was measured with the spectrum analyzer using;

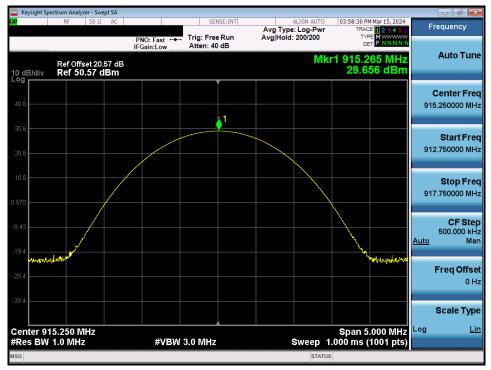
Span = approximately 5 times of the 20 dB bandwidth, centered on a hopping channel

RBW ≥ 20 dB BW VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold

4.4. Test Results

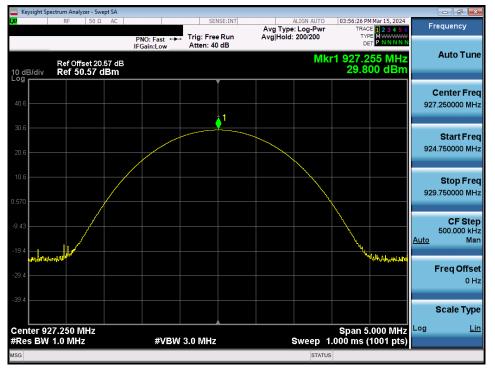

Tested Channel	Burst Average	Output Power	Peak Output Power		
	dBm	mW	dBm	mW	
Lowest	28.66	734.51	29.63	918.33	
Middle	28.61	726.11	29.66	924.70	
Highest	28.94	783.43	29.80	954.99	

Note 1: See next pages for actual measured spectrum plots.


Peak Output Power

TM 1 Test Channel : Lowest

Peak Output Power


TM 1 Test Channel : Middle

FCC ID: 2ARHHR5710

Peak Output Power

TM 1 Test Channel : Highest

5. 20dB BW

5.1. Test Setup

Refer to the APPENDIX I.

5.2. Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

5.3. Test Procedure

- 1. The 20 dB bandwidth were measured with a spectrum analyzer connected to RF antenna Connector (conducted measurement) while EUT was operating in transmit mode. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using below setting:

RBW = 1% to 5% of the 20 dB BW

 $VBW \ge 3 \times RBW$

Span = between two times and five times the 20 dB bandwidth

Sweep = auto

Detector function = peak

Trace = max hold

5.4. Test Results

Tested Channel	20dB BW (kHz)
Lowest	65.25
Middle	64.69
Highest	64.32

Note 1: See next pages for actual measured spectrum plots.

20 dB BW

TM 1 Test Channel : Lowest

20 dB BW

TM 1 Test Channel : Middle

20 dB BW

TM 1 Test Channel : Highest

6. Carrier Frequency Separation

6.1. Test Setup

Refer to the APPENDIX I.

6.2. Limit

Limit : \geq 25 kHz or \geq 20 dB BW whichever is greater.

6.3. Procedure

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

The spectrum analyzer is set to :

Span = wide enough to capture the peaks of two adjacent channels

RBW = Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to

best identify the center of each individual channel.

VBW ≥ RBW	Sweep = auto
Detector function = peak	Trace = max hold


6.4. Test Results

Test Mode	Hopping Mode	Peak of center channel (MHz)	Peak of adjacent Channel (MHz)	Test Result (kHz)
TM 1	Enable	915.254	914.752	-502.50

Carrier Frequency Separation

Hopping mode : Enable

7. Number of Hopping Frequencies

7.1. Test Setup

Refer to the APPENDIX I.

7.2. Limit

Limit: >= 50 hops

7.3. Procedure

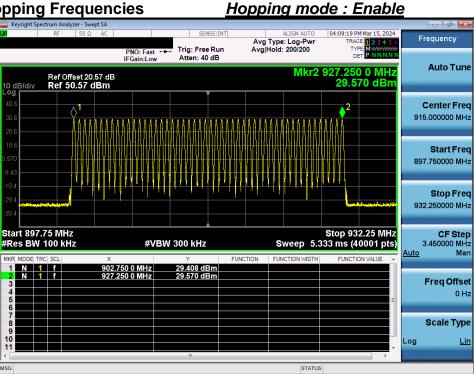
The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while

EUT had its hopping function enabled.

To get higher resolution, two frequency ranges for FH mode within the 902 ~ 928 MHz were examined.

The spectrum analyzer is set to :

Span = 34.5 MHzStart Frequency = 897.75 MHz,Stop Frequency = 932.25 MHzRBW = To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.


 $VBW \ge RBW$ Detector function = peak Sweep = auto Trace = max hold

7.4. Test Results

Test Mode	Hopping mode	Test Result (Total Hops)
TM 1	Enable	50

Dt&C

Number of Hopping Frequencies

8. Time of Occupancy (Dwell Time)

8.1. Test Setup

Refer to the APPENDIX I.

8.2. Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

8.3. Test Procedure

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to :

 Center frequency = 915.25 MHz
 Span = zero

 RBW = 100 kHz (RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel)

 VBW ≥ RBW
 Detector function = peak

Trace = max hold

8.4. Test Results

Test Mode	Hopping channels	Length (ms)	Number	Dwell Time (ms)	
TM 1	50	43.550	3.000	130.650	

Period(Hopping Mode)

Length(Hopping Mode)

0 (11	• •		
Knylight Spectrum Analyzer - Swept SA BF 50 0 AC SENSE-INT Trig Delay-100.0 ms PNO: Wide →→ Trig: Video IFGaint.40 dB	ALIGN AUTO 0414431 PM Mar 15, 2024 Avg Type: Log-Pwr Treat Treater Frequency	Krysight Spectrum Analyzer - Snept SA SEVSE: INIT 4LION AUTO 64-16-48 PH Mar 15, 2024 IF S0 S AC Trig Delay-100.0 ms Avg Type: Log-Pwr TMACE IP 2-34 SK PNO: Web	Frequency
Ref Offset 20.57 dB	ΔMkr1 43.55 ms 0.50 dB	Ref Offset 20.57 dB ΔMkr1 20.00 s 10 dB/div Ref 50.57 dBm -57.94 dB	Auto Tur
	Center Freq 915.250000 MHz		Center Fre 915.250000 MH
10.6 9.570 4.43	Start Freq 915.25000 MHz	106 0.50 9.43	Start Fre 915.250000 MH
 4 4	Stop Freq 915.250000 MHz	194 294 394	Stop Fre 915.250000 MH
Center 915.250000 MHz Res BW 100 kHz #VBW 300 kHz	Span 0 Hz Sweep 1.000 s (40001 pts) Auto Man	Center 915.250000 MHz Span 0 Hz Res BW 100 kHz #VBW 300 kHz Sweep 30.00 s (40001 pts)	CF Ste 100.000 kł Auto Mi
MOR BLOCH THC 5CL X Y FUECT 1 Δ2 1 1 K (Δ) 43,55 ms (Δ) 0,50 dB 2 F 1 K (Δ) 10,50 dB 2 F 1 K (Δ) 10,50 dB 2 F 1 K (Δ) 10,50 dB 2 F 1 K (PUNCTION WOTH FUNCTION VALUE Freq Offset 0 Hz	MMR MORE THE SEL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 0 2 1 t (Δ) 20.00 (Δ) -57.94 dB 2 F 1 t (Δ) 98.50 ms 29.32 dBm 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Freq Offse 0 H
9 8 9 10 11	Scale Type	11	Scale Typ
<	STATUS	MSG STATUS	

9. Unwanted Emissions

9.1. Test Setup

Refer to the APPENDIX I.

9.2. Limit

Part 15.247(d), Part 15.205, Part 15.209

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of Part 15.247 the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

- Part 15.209: General requirements

Frequency (MHz)	FCC Limit (uV/m)	Measurement Distance (m)
0.009 - 0.490	2 400 / F (kHz)	300
0.490 - 1.705	24 000 / F (kHz)	30
1.705 – 30.0	30	30
Frequency (MHz)	FCC Limit (uV/m)	Measurement Distance (m)
Frequency (MHz) 30 ~ 88	FCC Limit (uV/m) 100 **	Measurement Distance (m)
		Measurement Distance (m)

500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

3

- Part 15.205(a): Restricted band of operation

Above 960

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.414 25 ~ 8.414 75	108 ~ 121.94	1 300 ~ 1 427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1 435 ~ 1 626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.173 5 ~ 2.190 5	12.519 75 ~ 12.520 25	149.9 ~ 150.05	1 645.5 ~ 1 646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.576 75 ~ 12.577 25	156.524 75 ~ 156.525 25	1 660 ~ 1 710	8.025 ~ 8.5	22.01 ~ 23.12
4.177 25 ~ 4.177 75	13.36 ~ 13.41	156.7 ~ 156.9	1 718.8 ~ 1 722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.207 25 ~ 4.207 75	16.42 ~ 16.423	162.012 5 ~ 167.17	2 200 ~ 2 300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 310 ~ 2 390	10.6 ~ 12.7	36.43 ~ 36.5
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 483.5 ~ 2 500	13.25 ~ 13.4	Above 38.6
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	2 655 ~ 2 900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 260 ~ 3 267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 332 ~ 3 339		
8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1 240	3 345.8 ~ 3 358		
			3 600 ~ 4 400		

9.3. Test Procedures

9.3.1. Test Procedures (Radiated)

- The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 1 or 3 meter away from the interference-receiving antenna.
- 3. For measurements above 1GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 4. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 6. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 7. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Measurement Instrument Setting

- Frequencies less than or equal to 1 000 MHz
 The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- Frequencies above 1 000 MHz

Peak Measurement

RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto, Trace mode = Max Hold until the trace stabilizes

Average Measurement> 1GHz

RBW = 1MHz, VBW = Reduce the video bandwidth until no significant variations in the displayed signal are observed in subsequent traces, provided the video bandwidth is no less than 1 Hz. (Actual VBW setting: 30Hz) Detector = Peak, Sweep Time = Auto, Trace Mode = Max Hold until the trace stabilizes

9.3.2. Test Procedures (Conducted)

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The **reference level** of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 300 kHz.
- 3. The conducted spurious emission was tested each ranges were set as below.

```
Frequency range : 9 kHz ~ 30 MHz
RBW = 100 kHz, VBW = 300 kHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40 001
```

Frequency range : 30 MHz ~ 10 GHz RBW = 1 MHz, VBW = 3 MHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40 001

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2 001 to get accurate emission level within 100 kHz BW.

Also the path loss for conducted measurement setup was used as described on the Appendix I of this test report.

9.4. Test Results

9.4.1. Unwanted Emission (Radiated)

Test Notes

1. The radiated emissions below 1GHz were investigated 9 kHz to 1 GHz and the worst case data was reported.

2. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

- Calculation of distance correction factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

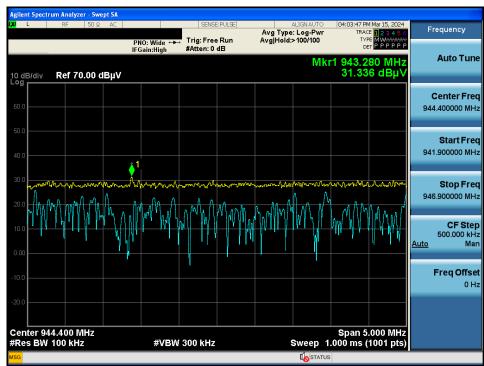
At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

3. Sample Calculation.

Margin = Limit - Result / Result = Reading + TF+ DCCF + DCF / TF = AF + CL + BL + AL - AG

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, BL = Band reject filter Loss, AL = Attenuator Loss, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor


Frequency Range : 9 kHz ~ 1 GHz_TM 1

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
898.76	Н	Х	PK	32.43	7.74	N/A	N/A	40.17	46.02	5.85
928.14	Н	Х	PK	31.20	8.38	N/A	N/A	39.58	46.02	6.44
943.28	V	Х	PK	31.34	8.87	N/A	N/A	40.21	46.02	5.81

TM1 & Lowest & X & Ver

Detector Mode : PK

Test Notes.

1. The radiated emissions above 1GHz were investigated up to 10 GHz. And no other spurious and harmonic emissions were found below listed frequencies.

2. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

- Calculation of distance correction factor

At frequencies below 30 MHz = $40 \log(\text{tested distance / specified distance})$ At frequencies at or above 30 MHz = $20 \log(\text{tested distance / specified distance})$

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

3. Sample Calculation.

Margin = Limit - Result / Result = Reading + TF+ DCCF + DCF / TF = AF + CL + HL + AL - AG

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High Pass filter Loss, AL = Attenuator Loss, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

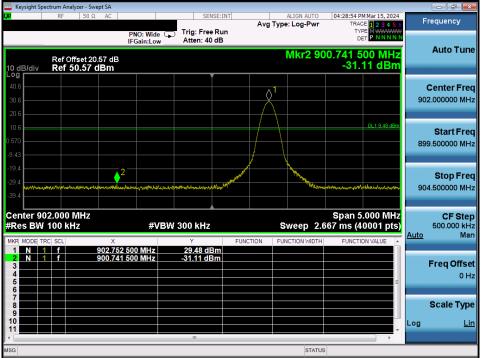
Frequency Range : 1 GHz ~ 10 GHz_TM 1

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 708.09	Н	Z	PK	51.51	5.82	N/A	N/A	57.33	74.00	16.67
2 708.18	Н	Z	AV	42.57	5.82	N/A	N/A	48.39	54.00	5.61
3 610.87	V	Y	PK	54.22	0.69	N/A	N/A	54.91	74.00	19.09
3 611.04	V	Y	AV	48.04	0.69	N/A	N/A	48.73	54.00	5.27
4 513.71	Н	Y	PK	53.31	2.01	N/A	N/A	55.32	74.00	18.68
4 513.78	Н	Y	AV	46.03	2.01	N/A	N/A	48.04	54.00	5.96
5 416.48	V	Z	PK	50.45	2.97	N/A	N/A	53.42	74.00	20.58
5 416.63	V	Z	AV	40.01	2.97	N/A	N/A	42.98	54.00	11.02
8 124.76	Н	Y	PK	49.96	4.76	N/A	N/A	54.72	74.00	19.28
8 124.79	Н	Y	AV	41.37	4.76	N/A	N/A	46.13	54.00	7.87
9 027.57	Н	Y	PK	43.39	8.66	N/A	N/A	52.05	74.00	21.95
9 027.49	Н	Y	AV	33.66	8.66	N/A	N/A	42.32	54.00	11.68

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 745.64	Н	Z	PK	51.33	5.86	N/A	N/A	57.19	74.00	16.81
2 745.76	Н	Z	AV	43.61	5.86	N/A	N/A	49.47	54.00	4.53
3 661.10	V	Y	PK	53.48	0.69	N/A	N/A	54.17	74.00	19.83
3 661.03	V	Y	AV	46.61	0.69	N/A	N/A	47.30	54.00	6.70
4 576.30	Н	Y	PK	53.28	1.93	N/A	N/A	55.21	74.00	18.79
4 576.23	Н	Y	AV	45.87	1.93	N/A	N/A	47.80	54.00	6.20
7 321.89	V	Z	PK	51.82	6.65	N/A	N/A	58.47	74.00	15.53
7 322.02	V	Z	AV	45.66	6.65	N/A	N/A	52.31	54.00	1.69
8 237.22	Н	Y	PK	48.18	5.16	N/A	N/A	53.34	74.00	20.66
8 237.28	Н	Y	AV	41.35	5.16	N/A	N/A	46.51	54.00	7.49
9 152.39	Н	Y	PK	45.61	8.67	N/A	N/A	54.28	74.00	19.72
9 152.52	Н	Y	AV	37.76	8.68	N/A	N/A	46.44	54.00	7.56

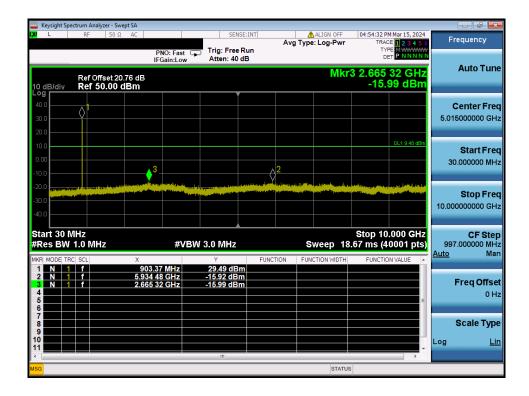

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 781.80	Н	Z	PK	50.86	5.89	N/A	N/A	56.75	74.00	17.25
2 781.75	Н	Z	AV	41.27	5.89	N/A	N/A	47.16	54.00	6.84
3 708.91	V	Y	PK	52.58	0.86	N/A	N/A	53.44	74.00	20.56
3 709.02	V	Y	AV	44.79	0.86	N/A	N/A	45.65	54.00	8.35
4 636.11	Н	Y	PK	53.12	1.85	N/A	N/A	54.97	74.00	19.03
4 636.24	Н	Y	AV	44.76	1.85	N/A	N/A	46.61	54.00	7.39
7 418.17	V	Z	PK	50.86	7.43	N/A	N/A	58.29	74.00	15.71
7 417.97	V	Z	AV	42.79	7.43	N/A	N/A	50.22	54.00	3.78
8 345.23	Н	Y	PK	46.53	5.44	N/A	N/A	51.97	74.00	22.03
8 345.27	Н	Y	AV	39.18	5.44	N/A	N/A	44.62	54.00	9.38

9.4.2. Unwanted Emissions (Conducted)

Low Band-edge

Lowest Channel


Low Band-edge Hopping mode 04:36:18 PM Mar 15, 2024 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N ALIGN AUTO Avg Type: Log-Pwr Frequency Trig: Free Run Atten: 40 dB TYP DE PNO: Fast 😱 Auto Tune Mkr1 893.738 MHz -30.42 dBm Ref Offset 20.57 dB Ref 50.57 dBm **Center Freq** . 902.000000 MHz Start Freq . 882.000000 MHz 1 Stop Freq 922.000000 MHz Span 40.00 MHz Sweep 5.333 ms (40001 pts) Center 902.00 MHz #Res BW 100 kHz CF Step 4.000000 MHz #VBW 300 kHz Auto Man FUNCTION 893.738 MHz -30.42 dBm N f Freq Offset 0 Hz Scale Type Lin Log

Unwanted Emissions

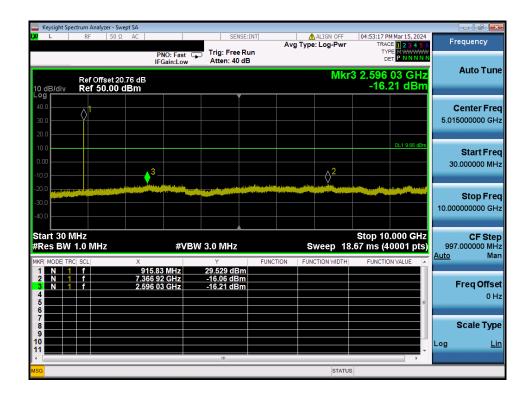
Lowest Channel

🔤 Keysight Spectrum Analyzer - Swept SA				
🗶 L RF 50 Ω 🚹 DC	SENSE:IN1	ALIGN OFF	04:52:05 PM Mar 15, 2024 TRACE 1 2 3 4 5 6	Frequency
Ref Offset 20.47 dB 10 dB/div Ref 50.00 dBm	PNO: Fast Trig: Free Run IFGain:Low Atten: 40 dB		Mkr1 281.9 kHz -24.109 dBm	Auto Tune
40.0 30.0 20.0				Center Freq 15.004500 MHz
10.0 0.00 -10.0			DL1 9.48 dBm	Start Freq 9.000 kHz
-20.0	AllerMassachrighten, beers the Lockson and	hantal gibby the good by the simulation of the station of the second system with	านการที่มีสู่มีหลังสารเป็นสี่งารที่สารเป็นสี่งารที่ไม่เห็นได้การไ	Stop Freq 30.000000 MHz
Start 9 kHz #Res BW 100 kHz	#VBW 300 kHz	Sweep 5.	Stop 30.00 MHz 333 ms (40001 pts) FUNCTION VALUE	CF Step 2.999100 MHz <u>Auto</u> Man
1 1 f 2 3 - - - - 4 - - - - - 5 -	281.9 kHz -24.109 dBm		E	Freq Offset 0 Hz
7 8 9 10				Scale Type
11				
		STATU		

🛈 Dt&C

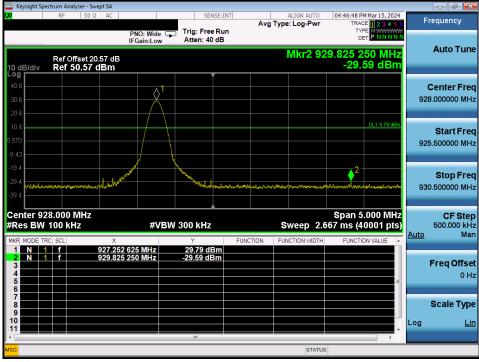
Reference for limit

Middle Channel

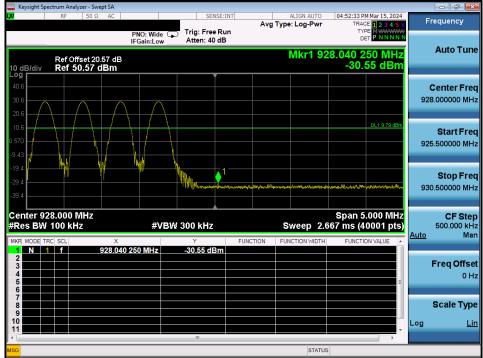

Keysight Spe	ctrum Analy	zer - Swep	ot SA										
<u>.</u>	RF	50 Ω	AC			SENS	E:INT	Ava	ALIGN AUTO Type: Log-Pwr		PM Mar 15, 2024	F	requency
10 dB/div	Ref Off Ref 50			PNO: Wide IFGain:Low		g: Free ten: 40				T. 5.252	750 MHz		Auto Tur
40.6 30.6		J.J7 U	BIII				1						Center Fre 5.250000 M⊦
10.6 0.570 -9.43											DL1 9.66 dBm	91	Start Fre 2.750000 M⊦
-19.4 -29.4 -39.4	(understandiged)	ht where the two	mertento	energen generation				hay Marina and set	attestenden verstanne standenen	ic,Nullmannumbra	nen hine han	91	Stop Fre 7.750000 MH
Center 91	100 kH		X	#VE	W 300	kHz	ELIN	ICTION	Sweep 2.	667 ms (4	5.000 MHz 10001 pts)		CF Ste 500.000 kl M
1 N 1 2 3 4 5		9		750 MHz		.66 dB					E		Freq Offs 0 I
6 7 8 9 10												Log	Scale Typ
11						ш			STATU	6	*		

Middle Channel

Unwanted Emissions


Keysight Spectrum Analyzer - Swept SA				
L RF 50 Ω 🚹 DC	SENS	E:INT ALIGN OFF		Frequency
Ref Offset 20.47 dB 10 dB/div Ref 50.00 dBm	PNO: Fast Trig: Free IFGain:Low Atten: 40	Run	Mkr1 281.9 kHz -24.13 dBm	Auto Tune
40.0 30.0 20.0				Center Freq 15.004500 MHz
10.0 0.00 -10.0			DL1 9.66 dBm	Start Freq 9.000 kHz
-20.0	ritalatei esitetilitaa vesetstelisea tetadead vagatustell	ten musel and the first and the first and the second state of the second state of the second state of the second	offurtional petrology and	Stop Freq 30.000000 MHz
Start 9 kHz #Res BW 100 kHz	#VBW 300 kHz	Sweep 4	Stop 30.00 MHz 5.333 ms (40001 pts)	CF Step 2.999100 MHz <u>Auto</u> Man
	281.9 kHz -24.13 dBr		Ξ	Freq Offset 0 Hz
7 8 9 10 11				Scale Type Log <u>Lin</u>
MSG		STAT	<mark>™s</mark> ♪DC Coupled	

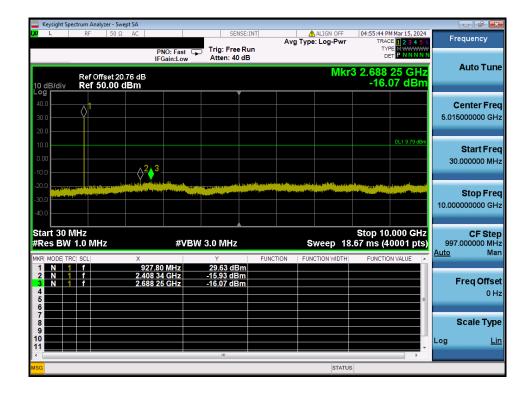
Dt&C


High Band-edge

Highest Channel

High Band-edge

Hopping mode



Unwanted Emissions

Highest Channel

	rum Analyzer - Swe										
L <mark>XI</mark> L	RF 50 Ω	A DC		SENS	SE:INT		ALIGN OFF	TRAC	M Mar 15, 2024		requency
10 dB/div	Ref Offset 20 Ref 50.00 d	IFGa .47 dB	0: Fast 😱 ain:Low	Trig: Free Atten: 40			_	۳۲ D Mkr1 28	5.7 kHz		Auto Tur
40.0 30.0 20.0											Center Fr 5.004500 MI
10.0									DL1 9.79 dBm		Start Fre 9.000 ki
-20.0	eseletteresetettettettettettettettettettettettett	ast).Berefactoretae.org.	<i>تېرىپا يېلەرلەر دولاي</i>	hunder Mathenste	ernen friederinder er	interneting and second second second second	a barren an tan	han the second secon	un panentapinting	31	Stop Fr 0.000000 M
Start 9 kHz #Res BW 1	00 kHz	X	#VBW	300 kHz	FUNC		weep 5.3	333 ms (4	0.00 MHz 0001 pts)		CF St 2.999100 M M
1 N 1 2 3 4 5 6 9		285.7	kHz	-25.46 dBr					=		Freq Offs 0
7 8 9 10										Log	Scale Ty
11				III					+		
								_		-	

10. AC Power Line Conducted Emission

10.1. Test Setup

See test photo graphs for the actual connections between EUT and support equipment.

10.2. Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

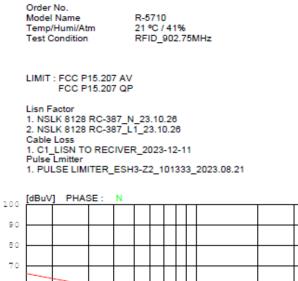
Frequency Range (MHz)	Conducted Limit (dBuV)					
Frequency Range (Minz)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5	56	46				
5 ~ 30	60	50				

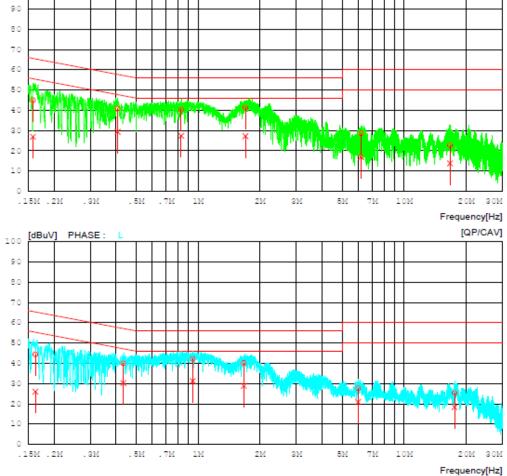
* Decreases with the logarithm of the frequency

10.3. Test Procedures

Conducted emissions from the EUT were measured according to the ANSI C63.10.

- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.


10.4. Test Results


AC Line Conducted Emissions (Graph) = Lowest Channel

Results of Conducted Emission

Date 2024-03-15

[QP/CAV]

AC Line Conducted Emissions (List) = Lowest Channel

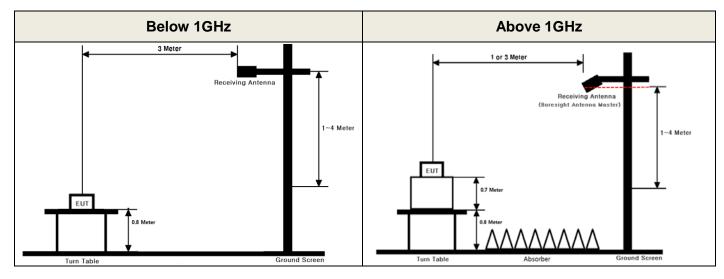
Results of Conducted Emission

Date 2024-03-15

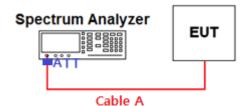
Order No. Model Name Temp/Humi/Atm Test Condition

R-5710 21 ºC / 41% RFID_902.75MHz

LIMIT : FCC P15.207 AV FCC P15.207 QP


Lisn Factor 1. NSLK 8128 RC-387_N_23.10.26 2. NSLK 8128 RC-387_L1_23.10.26 Cable Loss 1. C1_LISN TO RECIVER_2023-12-11 Pulse Lmitter 1. PULSE LIMITER_ESH3-Z2_101333_2023.08.21

NO	FREQ	READING QP CAV	C.FACTOR	RESULT QP CAV	LIMIT QP CAV	MARGIN QP CAV	PHASE
	[MHs]	[dBuV] [dBuV]	[dB]	[dBuV][dBuV]	[dBuV] [dBuV] [dBuV][dBuV	1
1	0.15817	34.95 16.91	9.99	44.94 26.90	65.56 55.50	5 20.62 28.66	N
2	0.40746	30.80 19.41	10.00	40.80 29.41	57.70 47.70	16.90 18.29	N
3	0.82837	30.25 17.37	10.01	40.26 27.38	56.00 46.00	15.74 18.62	N
4	1.69840	31.17 17.16	10.05	41.22 27.21	56.00 46.00	14.7818.79	N
5	6.18260	18.33 6.60	10.25	28.58 16.85	60.00 50.00	31.42 33.15	N
6	16.69440	12.01 3.18	10.53	22.54 13.71	60.00 50.00	37.4636.29	N
7	0.16250	34.36 16.02	9.99	44.35 26.01	65.34 55.34	4 20.99 29.33	L
8	0.43373	30.02 20.21	10.00	40.02 30.21	57.18 47.18	3 17.1616.97	L
9	0.94270	32.04 21.11	10.12	42.16 31.23	56.00 46.00	13.84 14.77	L
10	1.66740	30.06 18.67	10.15	40.21 28.82	56.00 46.00	15.7917.18	L
11	5.97840	17.39 10.58	10.28	27.67 20.86	60.00 50.00	32.33 29.14	L
12	17.56040	14.71 7.72	10.59	25.30 18.31	60.00 50.00	34.70 31.69	L


APPENDIX I

Test set up diagrams

Radiated Measurement

Conducted Measurement

Path loss information

Frequency (MHz)	Path Loss (dB)	Frequency (MHz)	Path Loss (dB)
30	20.47	1 000	20.59
500	20.50	5 000	20.73
902.75 & 915.25 & 927.25	20.57	10 000	20.76
-	-	-	-

Note 1 : The path loss from EUT to Spectrum analyzer were measured and used for test.

Path loss (S/A's Correction factor) = Cable A + Attenuator

APPENDIX II

Unwanted Emissions (Radiated) Test Plot

Middle& Z & Ver **Detector Mode : AV** lent Spectrum Analyzer - Swept SA 12 PM Mar 17, 2024 TRACE 123456 TYPE MWWWWW DET P P N N N N Frequency #Avg Type: Voltage Avg|Hold: 100/100 Trig: Free Run Atten: 6 dB PNO: Fast IFGain:Low Auto Tune Mkr1 7.322 017 GHz 45.662 dBµV Ref 76.99 dBµV 5 dB/div Log **Center Freq** 7.322000000 GHz Start Freq 7.319500000 GHz Stop Freq 7.324500000 GHz CF Step 915.250000 MHz Auto Man Freq Offset 0 Hz Center 7.322000 GHz #Res BW 1.0 MHz Span 5.000 MHz Sweep 130.0 ms (5001 pts) #VBW 30 Hz