

Global United Technology Services Co., Ltd.

Report No.: GTS202008000101-01

TEST REPORT

OCEAN NK DIGITAL TECHNOLOGY LIMITED Applicant:

Address of Applicant: BLK. F, 7/F., WAH HING INDUSTRIAL MANSIONS, 36 TAI

YAU STREET, SAN PO KONG, KOWLOON, Hong Kong

Manufacturer/Factory: NK (ShenZhen) Co.,Ltd

Address of No.8, Lanjin Seven Road, Pingshan District, Shenzhen

City, Guangdong Province 518118 China Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: Bluetooth Headphone

Model No.: RZE-BT166H

Trade Mark: **TOSHIBA**

FCC ID: 2APKZ-BT166H

IC: 23811-BT166H

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

> RSS-247 Issue 2 RSS-Gen Issue 5

Date of sample receipt: August 13, 2020

Date of Test: August 14, 2020-September 09, 2020

Date of report issued: September 10, 2020

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo **Laboratory Manager**

2 Version

Version No.	Date	Description
00	September 10, 2020	Original

Prepared By:	Date:	September 10, 2020
--------------	-------	--------------------

Project Engineer

1

Check By: Date: September 10, 2020

Reviewer

3 Contents

		Page
1	COVER PAGE	1
2	2 VERSION	2
_		
3	CONTENTS	3
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	5
	5.2 TEST MODE	
	5.3 DESCRIPTION OF SUPPORT UNITS	7
	5.4 DEVIATION FROM STANDARDS	
	5.5 ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6 TEST FACILITY	
	5.7 TEST LOCATION	
	5.8 ADDITIONAL INSTRUCTIONS	7
6	TEST INSTRUMENTS LIST	8
7	TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	10
	7.2 CONDUCTED EMISSIONS	
	7.3 CONDUCTED PEAK OUTPUT POWER	
	7.4 20DB EMISSION BANDWIDTH & 99% OCCUPY BANDWIDTH	
	7.5 CARRIER FREQUENCIES SEPARATION	
	7.6 HOPPING CHANNEL NUMBER	
	7.7 DWELL TIME	
	7.8 BAND EDGE	
	7.8.1 Conducted Emission Method	
	7.6.2 Radiated Emission Method	
	7.9 SPURIOUS EMISSION	
	7.9.2 Radiated Emission Method	
	7.10 FREQUENCY STABILITY	
8		
		·
9	EUT CONSTRUCTIONAL DETAILS	45

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c) RSS-Gen Section 6.8	Pass
AC Power Line Conducted Emission	15.207 RSS-Gen Section 8.8	Pass
Conducted Peak Output Power	15.247 (b)(1) RSS-247 Section 5.4(b)	Pass
20dB Occupied Bandwidth & 99% Occupy Bandwidth	15.247 (a)(1) RSS-247 Section 5.1(a) RSS-Gen Section 6.7	Pass
Carrier Frequencies Separation	15.247 (a)(1) RSS-247 Section 5.1(b)	Pass
Hopping Channel Number	15.247 (a)(1) RSS-247 Section 5.1(d)	Pass
Dwell Time	15.247 (a)(1) RSS-247 Section 5.1(d)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4) RSS-247 Section 5.1	Pass
Radiated Emission	15.205/15.209 Section 3.3 & RSS-Gen Section 8.9	Pass
Band Edge	15.247(d) RSS-247 Section 5.5	Pass
Frequency stability	RSS-Gen Section 6.11& Section 8.11	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013 and RSS-Gen.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	30MHz-200MHz	3.8039dB	(1)			
Radiated Emission	200MHz-1GHz	3.9679dB	(1)			
Radiated Emission	1GHz-18GHz	4.29dB	(1)			
Radiated Emission	18GHz-40GHz	3.30dB	(1)			
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)			
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.						

5 General Information

5.1 General Description of EUT

	I D. () () () ()
Product Name:	Bluetooth Headphone
Model No.:	RZE-BT166H
Test sample(s) ID:	GTS202008000101-1
Sample(s) Status:	Engineer sample
Serial No.:	200900001K0
Hardware Version:	V1.3
Software Version:	V1.2.2
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK
Antenna Type:	PCB Antenna
Antenna gain:	0dBi(Declare by applicant)
Power supply:	Battery: DC 3.7V, 300mAh, 1.11Wh

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data. New battery is used during all test.

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
APPLE	USB Charger	A1399	N/A

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special test command provided by manufacturer
Power level setup	Default

6 Test Instruments list

D =	Destination of the second of t								
Rad	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025			
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A			
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021			
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021			
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021			
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021			
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021			
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021			
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021			
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021			
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021			
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021			
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021			
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021			
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021			
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021			
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021			
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021			
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021			
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2019	Oct. 18 2020			
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2019	Oct. 18 2020			
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2019	Oct. 18 2020			
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021			

Cond	ducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June. 25 2020	June. 24 2021
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 25 2020	June. 24 2021

RF C	RF Conducted Test:						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021	
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021	

Gene	General used equipment:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date	Cal.Due date
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

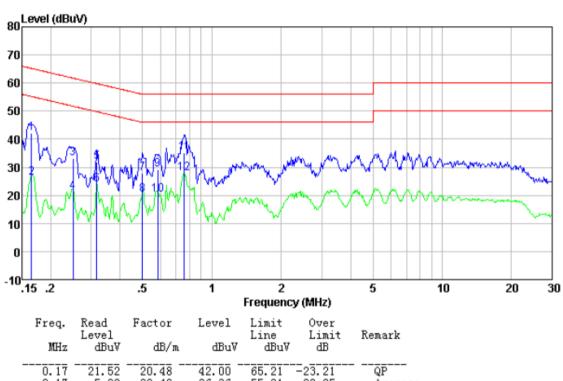
Standard requirement: RSS-Gen Section 6.8

A transmitter can only be sold or operated with antennas with which it was approved. When a measurement at the antenna connector is used to determine RF output power, the effective

gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. For transmitters of RF output power of 10 milliwatts or less, only the portion of the antenna gain that is in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power to demonstrate compliance with the radiated power limits specified in the applicable standard. For transmitters of output power greater than 10 milliwatts, the total antenna gain shall be added to the measured RF output power to demonstrate compliance to the specified radiated power

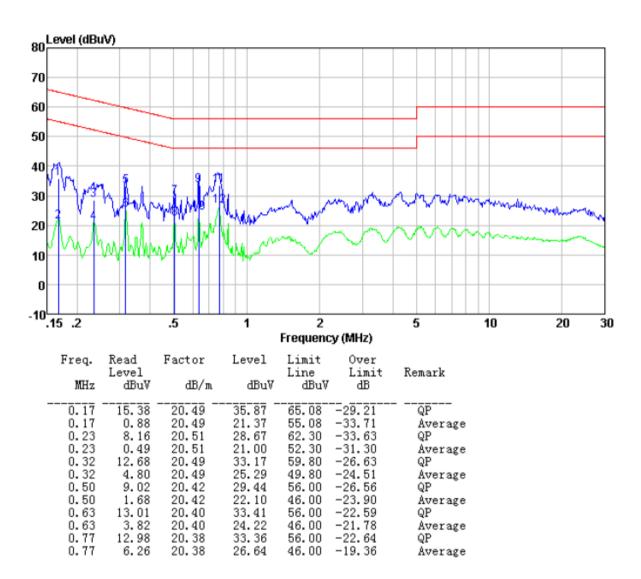
E.U.T Antenna:

The antenna is PCB antenna, the best case gain of the antenna is 0dBi, reference to the appendix II for details


7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207					
	RSS-Gen S	Section 8.8				
Test Method:	ANSI C63.1	0:2013 and F	RSS-Gen			
Test Frequency Range:	150KHz to	30MHz				
Class / Severity:	Class B					
Receiver setup:	RBW=9KH	z, VBW=30KI	Hz, Sweep tir	ne=auto		
Limit:	Frequen	cy range (M⊦	17)	Limit	(dBuV)	
		-	' QI	ıasi-peak	Aver	
		0.15-0.5	(66 to 56*	56 to	
		0.5-5		56	4	
	<u> </u>	5-30		60	5	0
	* Decreases with the logarithm of the frequency.					
Test setup:	Reference Plane					
	Remark E.U.T: Equipment LISN: Line Imped Test table height=	/Insulation plane † Under Test ence Stabilization Ne -0-8m	EMI Receive	Filter — AC p		
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 					
Test Instruments:	Refer to see	ction 6.0 for d	letails			
Test mode:	AC120V 60Hz					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test results:	Pass			ı	ı	ı
	•					

Measurement data:


Line:

Freq.	Read Level	Factor	Level	Limit Line	Over Limit	Remark
MHz	dBuV 	dB/m 	dBu∀ 	dBu∜	dB 	
0.17	21.52	20.48	42.00	65.21	-23.21	QP
0.17	5.88	20.48	26.36	55.21	-28.85	Average
0.25	12.61	20.50	33.11	61.78	-28.67	QP
0.25	0.80	20.50	21.30	51.78	-30.48	Average
0.32	11.44	20.49	31.93	59.80	-27.87	QP
0.32	3.52	20.49	24.01	49.80	-25.79	Average
0.50	7.29	20.43	27.72	56.01	-28.29	QP
0.50	-0.11	20.43	20.32	46.01	-25.69	Average
0.58	8.77	20.41	29.18	56.00	-26.82	QP
0.58	-0.09	20.41	20.32	46.00	-25.68	Average
0.76	14.74	20.38	35.12	56.00	-20.88	QP
0.76	7.32	20.38	27.70	46.00	-18.30	Äverage

Neutral:

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
	RSS-247 Section 5.4(b)	
Test Method:	ANSI C63.10:2013 and RSS-Gen	
Limit:	20.97dBm	
	36dBm(4W for e.i.r.p.)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Mode	Test channel	Peak Output Power (dBm)	e.i.r.p. (dBm)	Limit (dBm)	e.i.r.p. (dBm)	Result
	Lowest	4.013	4.013			
GFSK	Middle	4.003	4.003	20.97	36	Pass
	Highest	3.748	3.748			
	Lowest	4.455	4.455			
π/4-DQPSK	Middle	4.438	4.438	20.97	36	Pass
	Highest	4.264	4.264			

Test plot as follows:

Test mode: GFSK mode

Lowest channel

Middle channel

Highest channel

Test mode: π/4-DQPSK mode

Lowest channel

Middle channel

Highest channel

7.4 20dB Emission Bandwidth & 99% Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
	RSS-Gen Section 6.7 & RSS-247 Section 5.1(a)	
Test Method:	ANSI C63.10:2013 and RSS-Gen	
Limit:	N/A	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Tark Old	20dB Emission E	Decult	
Test CH	GFSK	π/4-DQPSK	Result
Lowest	0.8462	1.221	
Middle	0.8469	1.220	Pass
Highest	0.8463	1.214	

Took CI I	99% Occupy Ba	Decult	
Test CH	GFSK	π/4-DQPSK	Result
Lowest	0.80775	1.1822	
Middle	0.80953	1.1787	Pass
Highest	0.80890	1.1738	

Test plot as follows:

Test mode: GFSK mode

Lowest channel

Middle channel

Highest channel

Test mode: π/4-DQPSK mode

Lowest channel

Middle channel

Highest channel

7.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1) RSS-247 Section 5.1(b)	
Test Method:	ANSI C63.10:2013 and RSS-Gen	
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Mode	Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
	Lowest	1011	565	Pass
GFSK	Middle	1008	565	Pass
	Highest	1002	565	Pass
	Lowest	999	814	Pass
π/4-DQPSK	Middle	1002	814	Pass
	Highest	1002	814	Pass

Note: According to section 7.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	847	565
π/4-DQPSK	1221	814

Test plot as follows:

Test mode: GFSK mode

Lowest channel

Middle channel

Highest channel

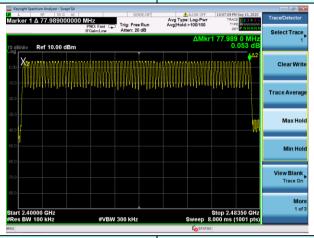
Test mode: π/4-DQPSK mode

Lowest channel

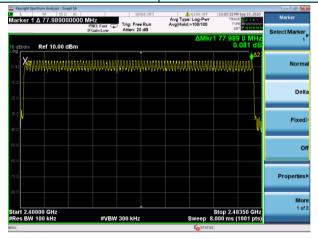
Middle channel

Highest channel

7.6 Hopping Channel Number


Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
	RSS-247 Section 5.1(d)
Test Method:	ANSI C63.10:2013 and RSS-Gen
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data:


Mode	Hopping channel numbers	Limit	Result
GFSK	79	15	Pass
π/4-DQPSK	79	15	Pass

Test mode: GFSK mode

Test mode: $\pi/4$ -DQPSK mode

7.7 Dwell Time

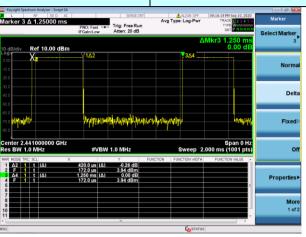
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
	RSS-247 Section 5.1(d)
Test Method:	ANSI C63.10:2013 and RSS-Gen
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak
Limit:	0.4 Second
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

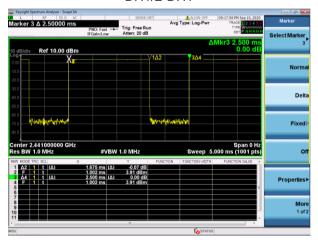
Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1/2-DH1	134	400	Pass
2441MHz	DH3/2-DH3	268	400	Pass
2441MHz	DH5/2-DH5	312	400	Pass

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

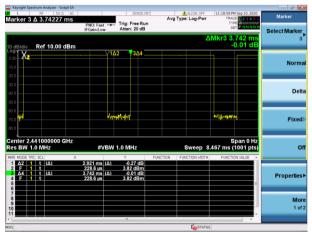
Test channel: 2441MHz as below


DH1/2-DH1 time slot=0.420(ms)*(1600/(2*79))*31.6=134ms DH3/2-DH3 time slot=1.675(ms)*(1600/(4*79))*31.6=268ms DH5/2-DH5 time slot=2.921(ms)*(1600/(6*79))*31.6=312ms

The test data shows only the worst case GFSK mode



Test plot as follows:


Test channel: 2441MHz

DH1/2-DH1

DH3/2-DH3

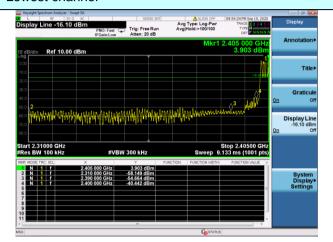
DH5/2-DH5

7.8 Band Edge

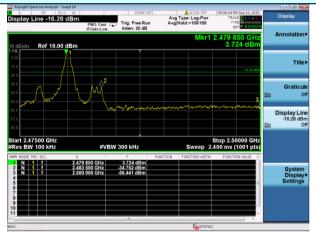
7.8.1 Conducted Emission Method

	T
Test Requirement:	FCC Part15 C Section 15.247 (d)
	RSS-247 Section 5.5
Test Method:	ANSI C63.10:2013 & RSS-Gen
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

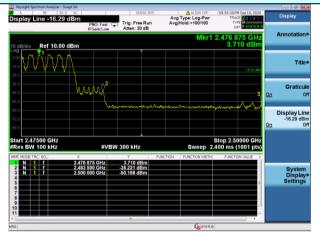
Test plot as follows:


GFSK Mode:

Test channel: Apopt Spectrum Analyse: Sweet Ed. Display Line <15.97 dBm PRO: Fast Fig. Trips: Free Run REGistrict or Attent: 20 dB

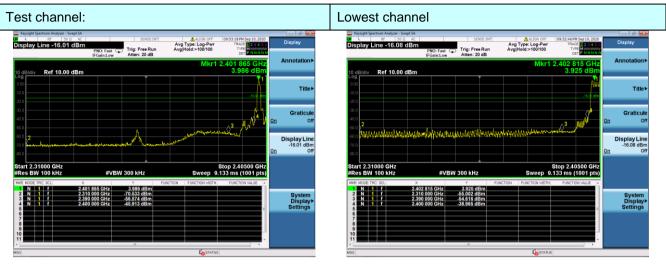

No-hopping mode

Lowest channel


Hopping mode

Test channel:

No-hopping mode


Highest channel

Hopping mode

π/4-DQPSK Mode:

No-hopping mode

Hopping mode

Test channel: Highest channel Highest channel Highest channel Title Display Line -16.25 dBm Picci and Title - 16.32 dBm Or of Caticule Or of Caticule

No-hopping mode

Hopping mode

7.8.2 Radiated Emission Method

Tool Doming mont	T	Castion 45 000	2 2 2 4 5 20 5				
Test Requirement:	FCC Part15 C Section 15.209 and 15.205 Section 3.3 & RSS-Gen Section 8.9						
To at Maril or I							
Test Method:	ANSI C63.10:20						
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.						
Test site:	Measurement D	istance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	Peak Value Average Value		
Limit:	Freque	ency	Limit (dBuV	/m @3m)	Remark		
	Above 1	GHz	54.0 74.0		Average Value Peak Value		
Test setup:	Test Antennae Turn Tablee						
Test Procedure:	1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.						
Test Instruments:	Refer to section	6.0 for detail	s				
Test mode:	Refer to section	5.2 for detail	S				
Test results:	Pass						
· · · · · · · · · · · · · · · · · · ·	·	· · · · · · · · · · · · · · · · · · ·	·				

Measurement Data

Test channel:	Lowest channel
---------------	----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	35.22	27.59	5.38	30.18	38.01	74.00	-35.99	Horizontal
2390.00	37.79	27.59	5.38	30.18	40.58	74.00	-33.42	Horizontal
2400.00	53.85	27.58	5.39	30.18	56.64	74.00	-17.36	Horizontal
2310.00	34.35	27.59	5.38	30.18	37.14	74.00	-36.86	Vertical
2390.00	37.86	27.59	5.38	30.18	40.65	74.00	-33.35	Vertical
2400.00	55.34	27.58	5.39	30.18	58.13	74.00	-15.87	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	26.44	27.59	5.38	30.18	29.23	54.00	-24.77	Horizontal
2390.00	29.49	27.59	5.38	30.18	32.28	54.00	-21.72	Horizontal
2400.00	40.43	27.58	5.39	30.18	43.22	54.00	-10.78	Horizontal
2310.00	26.08	27.59	5.38	30.18	28.87	54.00	-25.13	Vertical
2390.00	29.07	27.59	5.38	30.18	31.86	54.00	-22.14	Vertical
2400.00	41.59	27.58	5.39	30.18	44.38	54.00	-9.62	Vertical

Test channel:	Highest channel
---------------	-----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	39.29	27.53	5.47	29.93	42.36	74.00	-31.64	Horizontal
2500.00	39.43	27.55	5.49	29.93	42.54	74.00	-31.46	Horizontal
2483.50	39.28	27.53	5.47	29.93	42.35	74.00	-31.65	Vertical
2500.00	39.94	27.55	5.49	29.93	43.05	74.00	-30.95	Vertical

Average value:

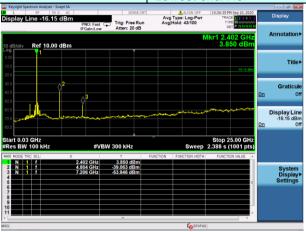
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	32.26	27.53	5.47	29.93	35.33	54.00	-18.67	Horizontal
2500.00	30.99	27.55	5.49	29.93	34.10	54.00	-19.90	Horizontal
2483.50	33.05	27.53	5.47	29.93	36.12	54.00	-17.88	Vertical
2500.00	30.48	27.55	5.49	29.93	33.59	54.00	-20.41	Vertical

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 4. During the test, pre-scan the GFSK, π /4-DQPSK modulation, and found the GFSK modulation which it is worse case.

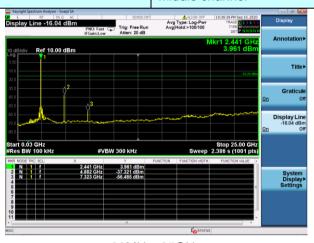
7.9 Spurious Emission

7.9.1 Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)				
·	RSS-247 Section 5.5				
Test Method:	ANSI C63.10:2013 & RSS-Gen				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

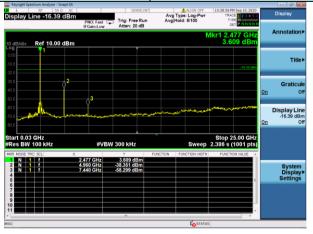
Remark:

During the test, pre-scan the GFSK, $\pi/4$ -DQPSK modulation, and found the GFSK modulation which it is worse case.


Test channel: Lowest channel

30MHz~25GHz

Test channel:


Middle channel

30MHz~25GHz

Test channel:

Highest channel

30MHz~25GHz

7.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C	FCC Part15 C Section 15.209						
	Section 3.3 &	Section 3.3 & RSS-Gen Section 8.9						
Test Method:	ANSI C63.10:2	ANSI C63.10:2013 & RSS-Gen						
Test Frequency Range:	9kHz to 25GH	Z						
Test site:	Measurement	Distance:	3m					
Receiver setup:	Frequenc	;y	Detector	RBW	VBW	Value		
·	9KHz-150K	Hz Q	uasi-peak	200Hz	600Hz	Quasi-peak		
	150KHz-30N	MHz G	uasi-peak	9KHz	30KHz	Quasi-peak		
	30MHz-1G	Hz G	uasi-peak	120KHz	300KHz	Quasi-peak		
			Peak	1MHz	3MHz	Peak		
	Above 1GI	Hz -	Peak	1MHz	10Hz	Average		
FCC Limit:		J				<u> </u>		
r oo zamii.	Frequency (MHz)		th (microvolts/n	neter) Me	asurement dist			
	0.009-0.490	2400/F(kHz)				300		
	0.490-1.705 1.705-30.0	24000/F(kHz 30	:)	+		30		
	30-88	100**				3		
	88-216	150**				3		
	216-960	200**				:		
	Above 960							
		its emplo	ying a CISI	PR quasi-p	eak detec	tor except for		
10.1	measurement the frequency Radiated em measuremen	nts emplo y bands 9 ission lim nts emplo	ying a CISI 9-90 kHz, 1 lits in these ying an ave	PR quasi-p 10-490 kH three ban erage detec	eak detect z and abo ds are basector.	tor except for ve 1000 MHz. sed on		
IC Limit:	measurement the frequency Radiated em measuremen	nts emplo y bands 9 ission lim nts emplo	ying a CISI 9-90 kHz, 1 iits in these	PR quasi-p 10-490 kH three ban erage detec	eak detect z and abo ds are basector.	tor except for ve 1000 MHz. sed on		
IC Limit:	measurement the frequency Radiated em measuremen	nts emplo y bands 9 ission lim nts emplo General fi Frequ	ying a CISI 9-90 kHz, 1 hits in these ying an ave eld strength lin	PR quasi-p 10-490 kH three banderage detection this at frequents	eak detect z and abo ds are bas ctor. ncies above 3	tor except for ve 1000 MHz. sed on		
IC Limit:	measurement the frequency Radiated em measuremen	nts emplo y bands 9 ission lim nts emplo - General fi Frequ (MI	ying a CISI 9-90 kHz, 1 hits in these ying an ave eld strength lindency Hz)	PR quasi-p 10-490 kH three banderage detection	eak detect z and abo ds are bas ctor. ncies above 3	tor except for ve 1000 MHz. sed on		
IC Limit:	measurement the frequency Radiated em measuremen	nts emplo y bands 9 ission lim nts emplo - General fi Frequ	ying a CISI 9-90 kHz, 1 hits in these ying an ave eld strength lin ency Hz)	PR quasi-p 10-490 kH three ban erage detec nits at frequen Field stren (µV/m at 3	eak detect z and abo ds are bas ctor. ncies above 3	tor except for ve 1000 MHz. sed on		
IC Limit:	measurement the frequency Radiated em measuremen	ots emplo y bands (ission lim its emplo - General fi Frequ (MI	ying a CISI 9-90 kHz, 1 hits in these ying an ave eld strength lin tency Hz)	PR quasi-p 10-490 kH three bane erage detect nits at frequer Field strer (µV/m at 3	eak detect z and abo ds are bas ctor. ncies above 3	tor except for ve 1000 MHz. sed on		
IC Limit:	measurement the frequency Radiated em measuremen	ots emplo y bands 9 ission lim its emplo - General fi Frequ (MI 30 -	ying a CISI 9-90 kHz, 1 hits in these ying an ave eld strength line ency Hz) 88 216	PR quasi-p 10-490 kH three banderage detect its at frequer Field stret (µV/m at 3 100 150	eak detect z and abo ds are bas ctor. ncies above 3	tor except for ve 1000 MHz. sed on		
IC Limit:	measurement the frequency Radiated emmeasurement Table 5	ots emplo y bands 9 ission limits emplo - General fi Frequ (MI 30 - 88 - 216 - Above	ying a CISI 9-90 kHz, 1 hits in these ying an ave eld strength lin hency Hz) 88 216 960 e 960	PR quasi-p 10-490 kH three ban- erage detect nits at frequer Field stree (µV/m at 3 100 150 200 500 mits at frequer	eak detect and about are based tor. Incies above 36 Ingth B m)	etor except for ove 1000 MHz. sed on 0 MHz		
IC Limit:	measurement the frequency Radiated emmeasurement Table 5 -	ots emplo y bands 9 ission limits emplo - General fi Frequ (MI 30 - 88 - 216 - Above	ying a CISI 9-90 kHz, 1 hits in these ying an ave eld strength lin ency Hz) 88 216 960 e 960 eld strength lin Magnetic fie	PR quasi-p 10-490 kH three banderage detect nits at frequen Field stree (µV/m at 3 100 150 200 500	eak detect and about are based tor. Incies above 36 Ingth B m)	o MHz o MHz ement nce		
IC Limit:	measurement the frequency Radiated emmeasurement Table 5 -	ots emplo y bands 9 ission limits emplo - General fi (MI 30 - 88 - 216 - Above	ying a CISI 9-90 kHz, 1 hits in these ying an ave eld strength lin lency Hz) 88 216 960 e 960 eld strength lin Magnetic fie F	PR quasi-p 10-490 kH three ban- erage detect nits at frequen Field stree (µV/m at 3 100 150 200 500 mits at frequen eld strength (Field)	eak detect and about a are based tor. Incies above 3 (and the start and	o MHz o MHz ement nce		
IC Limit:	Table 6 -	ots emplo y bands 9 ission lim its emplo - General fi Frequ (MI 30 - 88 - 216 - Above - General fi	ying a CISI 9-90 kHz, 1 hits in these ying an ave eld strength lin lency Hz) 88 216 960 eld strength lin Magnetic fic F (µ 6.37/F 63.7/F	PR quasi-p 10-490 kH three ban- erage detect nits at frequen Field stren (µV/m at 3 100 150 200 500 mits at frequen eld strength (Eield) A/m)	eak detect and about a and about are based tor. Incies above 30 and a	otor except for eve 1000 MHz. sed on 0 MHz MHz MHz MHz MHz		

Report No.: GTS202008000101-01 Test setup: For radiated emissions from 9kHz to 30MHz < 3m > Test Antenna EUT. Turn Table 1m< 80cm Tum Table↔ Receiver+ For radiated emissions from 30MHz to1GHz < 3m > Test Antenna EUT. Turn Table < 80cm > Turn Table Preamplifier« For radiated emissions above 1GHz Test Antenna+ < 1m ... 4m > EUT. Turn Table <150cm Receiver+ Preamplifier+ Test Procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna 3. The antenna height is varied from one meter to four meters above the

ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the

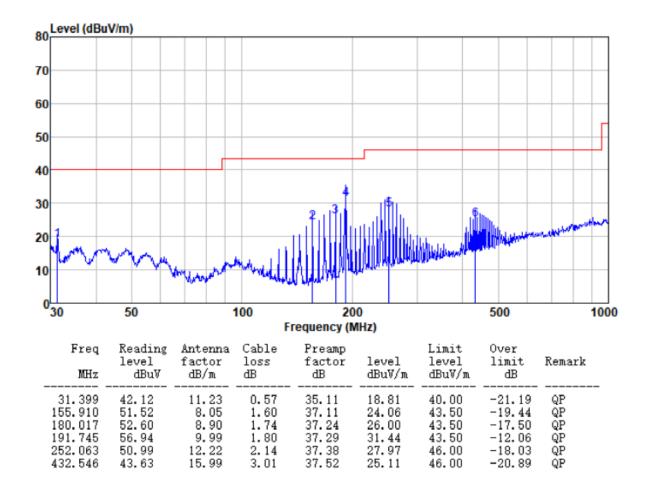
	measure	ement					
	4. For each and ther the rota	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.					
		5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.					
	limit spe EUT wo margin v	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.					
Test Instruments:	Refer to se	ction 6.0 for o	details				
Test mode:	Refer to se	Refer to section 5.2 for details					
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar					
Test results:	Pass						

Measurement data:

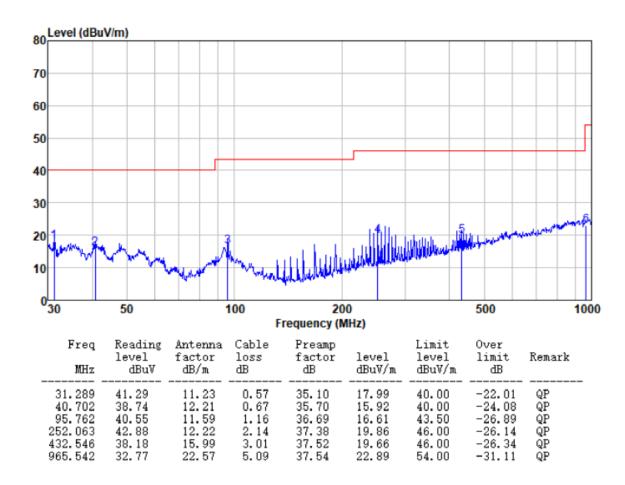
Remarks:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz


Pre-scan all test modes, found worst case at GFSK 2480MHz, and so only show the test result of GFSK 2480MHz

Horizontal:

Vertical:

■ Above 1GHz

Test channel: Lowest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	35.64	31.78	8.60	32.09	43.93	74.00	-30.07	Vertical
7206.00	30.72	36.15	11.65	32.00	46.52	74.00	-27.48	Vertical
9608.00	30.48	37.95	14.14	31.62	50.95	74.00	-23.05	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	39.58	31.78	8.60	32.09	47.87	74.00	-26.13	Horizontal
7206.00	32.33	36.15	11.65	32.00	48.13	74.00	-25.87	Horizontal
9608.00	29.75	37.95	14.14	31.62	50.22	74.00	-23.78	Horizontal
12010.00	*				_	74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Average val	uc.							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	24.77	31.78	8.60	32.09	33.06	54.00	-20.94	Vertical
7206.00	19.60	36.15	11.65	32.00	35.40	54.00	-18.60	Vertical
9608.00	18.78	37.95	14.14	31.62	39.25	54.00	-14.75	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	28.81	31.78	8.60	32.09	37.10	54.00	-16.90	Horizontal
7206.00	21.66	36.15	11.65	32.00	37.46	54.00	-16.54	Horizontal
9608.00	18.37	37.95	14.14	31.62	38.84	54.00	-15.16	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Test channel:	Middle channel
---------------	----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	35.39	31.85	8.67	32.12	43.79	74.00	-30.21	Vertical
7323.00	30.56	36.37	11.72	31.89	46.76	74.00	-27.24	Vertical
9764.00	30.34	38.35	14.25	31.62	51.32	74.00	-22.68	Vertical
12205.00	*					74.00		Vertical
14646.00	*					74.00		Vertical
4882.00	39.29	31.85	8.67	32.12	47.69	74.00	-26.31	Horizontal
7323.00	32.15	36.37	11.72	31.89	48.35	74.00	-25.65	Horizontal
9764.00	29.58	38.35	14.25	31.62	50.56	74.00	-23.44	Horizontal
12205.00	*					74.00		Horizontal
14646.00	*					74.00		Horizontal

Average value:

Average val	uc.							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	24.57	31.85	8.67	32.12	32.97	54.00	-21.03	Vertical
7323.00	19.47	36.37	11.72	31.89	35.67	54.00	-18.33	Vertical
9764.00	18.66	38.35	14.25	31.62	39.64	54.00	-14.36	Vertical
12205.00	*					54.00		Vertical
14646.00	*					54.00		Vertical
4882.00	28.59	31.85	8.67	32.12	36.99	54.00	-17.01	Horizontal
7323.00	21.51	36.37	11.72	31.89	37.71	54.00	-16.29	Horizontal
9764.00	18.23	38.35	14.25	31.62	39.21	54.00	-14.79	Horizontal
12205.00	*					54.00		Horizontal
14646.00	*					54.00		Horizontal

Ī	Test channel:	Highest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	34.94	31.93	8.73	32.16	43.44	74.00	-30.56	Vertical
7440.00	30.26	36.59	11.79	31.78	46.86	74.00	-27.14	Vertical
9920.00	30.07	38.81	14.38	31.88	51.38	74.00	-22.62	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	38.75	31.93	8.73	32.16	47.25	74.00	-26.75	Horizontal
7440.00	31.81	36.59	11.79	31.78	48.41	74.00	-25.59	Horizontal
9920.00	29.27	38.81	14.38	31.88	50.58	74.00	-23.42	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal

Average value:

, troidge rais								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	24.22	31.93	8.73	32.16	32.72	54.00	-21.28	Vertical
7440.00	19.23	36.59	11.79	31.78	35.83	54.00	-18.17	Vertical
9920.00	18.45	38.81	14.38	31.88	39.76	54.00	-14.24	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	28.18	31.93	8.73	32.16	36.68	54.00	-17.32	Horizontal
7440.00	21.24	36.59	11.79	31.78	37.84	54.00	-16.16	Horizontal
9920.00	17.98	38.81	14.38	31.88	39.29	54.00	-14.71	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The test data shows only the worst case GFSK mode

7.10 Frequency Stability

Test Requirement:	RSS-Gen Section 6.11& Section 8.1	11					
Test Method:	ANSI C63.10: 2013 & RSS-Gen						
Limit:	Manufactures of devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified						
Test Procedure:		The EUT was setup to ANSI C63.10, 2013; tested to 2.1055 for compliance to RSS-Gen requirements.					
Test setup:		Temperature Chamber					
	Spectrum analyzer Att. Note: Measurement setup for testing on A	Variable Power Supply Antenna connector					
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Remark: Set the EUT transmits at un-modulation mode to test frequency stability.

Measurement data:

weasuremen		Frequenc	y stability vers	us Temp.		
			er Supply: DC			
		0 minute	2 minute	5 minute	10 minute	
Temp. (°C)	Operating	Measured	Measured	Measured	Measured	Pass
	Frequency (MHz)	Frequency	Frequency	Frequency	Frequency	/Fail
()		(MHz)	(MHz)	(MHz)	(MHz)	,
	2402	2402.41	2402.33	2402.359	2402.36	Pass
-30	2441	2441.31	2440.30	2440.550	2440.55	Pass
	2480	2480.69	2480.51	2480.096	2480.10	Pass
	2402	2402.06	2402.13	2402.821	2402.82	Pass
-20	2441	2441.36	2440.59	2440.414	2440.42	Pass
	2480	2480.74	2480.74	2480.501	2480.50	Pass
	2402	2402.50	2402.98	2402.713	2402.72	Pass
-10	2441	2441.80	2440.74	2440.529	2440.53	Pass
	2480	2480.96	2480.25	2480.512	2480.51	Pass
	2402	2402.98	2402.28	2402.447	2402.45	Pass
0	2441	2441.77	2440.81	2440.965	2440.97	Pass
	2480	2480.56	2480.89	2480.309	2480.31	Pass
	2402	2402.84	2402.48	2402.221	2402.22	Pass
10	2441	2441.36	2440.78	2440.679	2440.68	Pass
	2480	2480.13	2480.71	2480.947	2480.95	Pass
	2402	2402.25	2402.33	2402.628	2402.63	Pass
20	2441	2441.09	2440.76	2440.433	2440.44	Pass
-	2480	2480.65	2480.73	2480.707	2480.71	Pass
	2402	2402.38	2402.90	2402.584	2402.59	Pass
30	2441	2441.94	2440.30	2440.023	2440.03	Pass
	2480	2480.70	2480.08	2480.012	2480.01	Pass
	2402	2402.49	2402.82	2402.030	2402.03	Pass
40	2441	2441.22	2440.62	2440.002	2440.00	Pass
	2480	2480.26	2480.25	2480.902	2480.90	Pass
	2402	2402.10	2402.45	2402.137	2402.14	Pass
50	2441	2441.96	2440.22	2440.575	2440.58	Pass
	2480	2480.04	2480.90	2480.222	2480.22	Pass
			y stability versu			
			emperature: 25			
D	0	0 minute	2 minute	5 minute	10 minute	
Power	Operating	Measured	Measured	Measured	Measured	Pass
Supply (VDC)	Frequency (MHz)	Frequency	Frequency	Frequency	Frequency	/Fail
		(MHz)	(MHz)	(MHz)	(MHz)	
	2402	2402.73	2402.13	2402.89	2402.73	Pass
4.07	2441	2441.71	2440.59	2440.26	2441.71	Pass
	2480	2480.54	2480.09	2480.87	2480.54	Pass
	2402	2402.72	2402.44	2402.24	2402.72	Pass
3.33	2441	2441.76	2440.91	2440.97	2441.76	Pass
	2480	2480.70	2480.13	2480.73	2480.70	Pass

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----