

Report Number.: 11988903-E6V1

Applicant : Mayfield Robotics

400 Convention Way Redwood City, CA 94063

Model: AHR-M8T

FCC ID : 2AN44-AHR-M8T

EUT Description: General Consumer Home Robot

Test Standard(s): FCC Part 1 Subpart I

FCC Part 2 Subpart J

Date Of Issue: June 27, 2018

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	6/11/2018	Initial Issue	
V2	6/27/2018	Updated antenna gains, Tolerances	F. de Anda

TABLE OF CONTENTS

1.	ΑTΊ	ATTESTATION OF TEST RESULTS			
2.	TES	ST METHODOLOGY	5		
		FERENCES			
4.	FAC	CILITIES AND ACCREDITATION	5		
5.	DES	SCRIPTION OF EUT	5		
6.	MA	XIMUM PERMISSIBLE RF EXPOSURE	6		
(6.1.	FCC RULES	6		
(6.2.	IC RULES	7		
(6.3.	EQUATIONS	8		
(6. <i>4.</i>	LIMITS AND IC EXEMPTION	10		
7.	RF	EXPOSURE RESULTS	11		

DATE: June 27, 2018 MODEL: AHR-M8T

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: Mayfield Robotics

400 Convention Way Redwood City, CA 94063

EUT DESCRIPTION: General Consumer Home Robot

MODEL: AHR-M8T

SERIAL NUMBER: NA

DATE TESTED: NA

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 1 SUBPART I & PART 2 SUBPART J Exempt from SAR testing

UL Verification Services Inc. calculated the RF Exposure of the above equipment in accordance with the requirements set forth in the above standards, using test results reported in the test report documents referenced below and/or documentation furnished by the applicant. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations of these calculations. The results show that the equipment is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For UL Verification Services Inc. Bv:

Francisco de Anda

CONSUMER TECHNOLOGY DIVISION

comine de aute

Operations Leader

UL Verification Services Inc.

2. TEST METHODOLOGY

All calculations were made in accordance with FCC OET Bulletin 65 Edition 97-01 and IC Safety Code 6.

3. REFERENCES

All measurements were made as documented in test report UL Verification Services Inc. Document 11988903-E1V2 FCC DTS Report, 11988903-E2V2 FCC BLE Report and 11988903-E3V2 FCC BT Report for operation in the 2.4 GHz band and UL Verification Services Inc. Document 11988903-E5V2 FCC UNII Report for operation in the 5 GHz bands.

Duty cycle data is excerpted from the applicable test reports.

Output power is excerpted from the applicable test reports.

Antenna gain data is excerpted from product documentation provided by the applicant.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

5. DESCRIPTION OF EUT

The EUT is a general consumer home robot

6. MAXIMUM PERMISSIBLE RF EXPOSURE

6.1. FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)				
	(A) Limits for Occupational/Controlled Exposure							
0.3-3.0	614	1.63	*100	6				
3.0-30	1842/f	4.89/f	*900/f ²	6				
30-300	61.4	0.163	1.0	6				
300-1,500			f/300	6				
1,500-100,000			5	6				
	(B) Limits for Genera	l Population/Uncontrolle	d Exposure					
0.3-1.34	614	1.63	*100	30				
1.34-30	824/f	2.19/f	*180/f ²	30				
30-300	27.5	0.073	0.2	30				
300-1,500			f/1500	30				
1,500-100,000			1.0	30				

f = frequency in MHz

Notes:

- (1) Occupational/controlled exposure limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when a person is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
- (2) General population/uncontrolled exposure limits apply in situations in which the general public may be exposed, or in which persons who are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure

^{* =} Plane-wave equivalent power density

6.2. IC RULES

IC Safety Code 6 (2015), Section 2.2.2: To ensure compliance with the basic restrictions outlined in Section 2.1, at frequencies between 10 MHz and 300 GHz, the reference levels for electric- and magnetic-field strength and power density must be complied with.

TABLE 5: Reference Levels for Electric Field Strength, Magnetic Field Strength and Power Density in Uncontrolled Environments

Frequency (MHz)	Electric Field Strength (E _{RL}), (V/m, RMS)	Magnetic Field Strength (H _{RL}), (A/m, RMS)	Power Density (S _{RL}), (W/m²)	Reference Period (minutes)
10-20	27.46	0.0728	2	6
20-48	58.07 / f 0.25	0.1540 / f ^{0.25}	8.944 / f 05	6
48-300	22.06	0.05852	1.291	6
300-6000	3.142 f 0.3417	0.008335 f 0.3417	0.02619 f DEB34	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	616000 / f 12
150000-300000	0.158 f as	4.21x10 ⁻⁴ f ⁰⁵	6.67x10 ⁻⁵ f	616000 / f 12

Frequency, f, is in MHz.

TABLE 6: Reference Levels for Electric Field Strength, Magnetic Field Strength and Power Density in Controlled Environments

Frequency (MHz)	Electric Field Strength (E _{RL}), (V/m, RMS)	Magnetic Field Strength (H _{RL}), (A/m, RMS)	Power Density, (S _{RL}), (W/m²)	Reference Period (minutes)
10-20	61.4	0.163	10	6
20-48	129.8 / f 0.25	0.3444 / f ^{0.25}	44.72 / f 05	6
48-100	49.33	0.1309	6.455	6
100-6000	15.60 f 0.25	0.04138 f 025	0.6455 f °5	6
6000-15000	137	0.364	50	6
15000-150000	137	0.364	50	616000 / f 12
150000-300000	0.354 f °5	9.40x10 ⁻⁴ f ^{0.5}	3.33x10 ⁻⁴ f	616000 / f 12

Frequency, f, is in MHz.

NOTES FOR TABLES 5 AND 6:

1. For exposures shorter than the reference period, field strengths may exceed the reference levels, provided that the time average of the squared value of the electric or magnetic field strength over any time period equal to the reference period shall not exceed E_{RL}² or H_{RL}², respectively. For exposures longer than the reference period, including indefinite exposures, the time average of the squared value of the electric or magnetic field strength over any time period equal to the reference period shall not exceed E_{RL}² or H_{RL}², respectively.

6.3. EQUATIONS

POWER DENSITY

Power density is given by:

 $S = EIRP / (4 * Pi * D^2)$

Where

S = Power density in mW/cm^2 EIRP = Equivalent Isotropic Radiated Power in mW D = Separation distance in cm

Power density in units of mW/cm² is converted to units of W/m² by multiplying by 10.

DISTANCE

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

Where

D = Separation distance in cm EIRP = Equivalent Isotropic Radiated Power in mW S = Power density in mW/cm^2

SOURCE-BASED DUTY CYCLE

Where applicable (for example, multi-slot cell phone applications) a duty cycle factor may be applied.

Source-based time-averaged EIRP = (DC / 100) * EIRP

Where

DC = Duty Cycle in %, as applicable EIRP = Equivalent Isotropic Radiated Power in W

MIMO AND COLOCATED TRANSMITTERS (IDENTICAL LIMIT FOR ALL TRANSMITTERS)

For multiple chain devices, and colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the EIRP (in linear units) of each transmitter.

Total EIRP = (EIRP1) + (EIRP2) + ... + (EIRPn)

where

EIRPx = Source-based time-averaged EIRP of chain x or transmitter x

The total EIRP is then used to calculate the Power Density or the Distance as applicable.

MIMO AND COLOCATED TRANSMITTERS

For multiple colocated transmitters operating simultaneously in frequency bands where different limits apply:

The Power Density at the specified separation distance is calculated for each transmitter chain or transmitter.

The fraction of the exposure limit is calculated for each chain or transmitter as (Power Density of chain or transmitter) / (Limit applicable to that chain or transmitter).

The fractions are summed.

Compliance is established if the sum of the fractions is less than or equal to one.

6.4. LIMITS AND IC EXEMPTION

INDUSTRY CANADA EXEMPTION

RSS-102 Clause 2.5.2 RF exposure evaluation is required if the separation distance between the user and the device's radiating element is greater than 20 cm, except when the device operates as follows:

• at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1.31 x 10 $^-2$ $f^0.6834$ W (adjusted for tune-up tolerance), where f is in MHz;

7. RF EXPOSURE RESULTS

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

(Single chain transmitters, no colocation, MPE distance > 20 cm)

Single Chain and non-colocated transmitters									
Band	Mode	FCC	IC	Output	Antenna	EIRP	Duty	EIRP	Separation
		Limit	Limit	AVG	Gain		Cycle		Distance
				Power					
		(mW/cm^2)	(W/m^2)	(dBm)	(dBi)	(dBm)	(%)	(mW)	(cm)
2.4 GHz	BLE	1.00	10.0	-16.99	3.10	-13.89	59.5	0.02	0.04
2.4 GHz	ВТ	1.00	10.0	-0.90	3.10	2.20	76.9	1.28	0.32
2.4 GHz	WLAN	1.00	10.0	16.94	3.10	20.04	100.0	100.9	2.83
5 GHz	WLAN	1.00	10.0	18.55	3.60	22.15	100.0	164.1	3.61

Band	@	FCC Power	IC Power	
	Distance	Density	Density	
		(mW/cm^2)	(W/cm^2)	
2.4 GHz BLE		0.00005	0.00005	
2.4 GHz BT	20.00	0.0003	0.003	
2.4 GHz WLAN	20.00	0.020	0.201	
5 GHz WLAN		0.033	0.327	
DIE /2 4011				
BLE/2.4GHz				
WLAN				
Combined		0.020	0.201	
BT/2.4GHz				
WLAN				
Combined	20.00	0.020	0.203	
BLE/5GHz	20.00			
WLAN				
Combined		0.033	0.327	
BT/5GHz				
WLAN				
Combined		0.033	0.329	

The device operates above 300 MHz and below 6 GHz with a maximum EIRP less than or equal to 2.7 Watts in 2.4GHz band and 4.9 Watts in the 5GHz bands as a mobile device with a minimum separation distance of 20 cm, therefore it is exempt from routine RF Exposure Evaluation under RSS-102.

Notes:

1) A tolerance value was included in the output power values above to cover the output power tolerance under extreme conditions as declared by the client as below;

BLE	+1.00 dB		
BT	+1. 25 dB		
2.4 GHz WLan	+1.00 dB		
5 GHz Wlan	+3.00 dB		

Standard Bluetooth RF Characteristics:

The manufacturer power variation over temperature is up to +/- 1.25dB

BLE RF Characteristics:

The manufacturer power variation over temperature is up to +1dB / -4dB

WiFi RF Characteristics:

The manufacturer power variation over temperature is up to +/- 1.0dB for 2.4GHz band. The manufacturer power variation over temperature is up to +/- 3.0dB for bands greater than 5.0GHz.

- 2) The output power in the tables above is the maximum power per chain among various channels and various modes within the specific band.
- 3) The antenna gain in the tables above is the maximum antenna gain among various channels within the specified band.

END OF REPORT