Reference number: 291651-2-3 Page 1 of 11

Test Report

INTENTIONAL RADIATOR TESTS ACCORDING TO FCC PART 15 C AND ISED CANADA REQUIREMENTS

Equipment Under Test:

Indoor mini Drone system with UWB radio technology

Trademark:

Intel

Model:

Shooting Star Mini Drone

Applicant:

Intel Corporation

2200 Mission College Blvd Santa Clara, CA 95054

USA

Manufacturer:

Intel

Behringstraße 10 82152 Planegg GERMANY

FCC Rule Part: IC Rule Part:

Part 15 C

RSS-GEN Issue 4, 2014

Partial testing, see test suite

Date:

12 October 2018

Date:

12 October 2018

Issued by:

Mikka Halanan

Mikko Halonen Testing Engineer Checked by:

Rauno Repo Testing Engineer

PRODUCT DESCRIPTION	.3
Equipment Under Test (EUT)	.3
General Description	.3
Samples and Modifications	.3
Specifications	
Power Requirements	.3
Cable Lengths and Types	.4
Peripherals	.4
GENERAL REMARKS	.5
Disclaimer	.5
TEST CONDITIONS	.6
EUT Test Conditions during Testing	.6
SUMMARY OF TESTING	.7
Summary of Testing	.7
TEST RESULTS	.8
Conducted Emissions In The Frequency Range 150 kHz - 30 MHz	
	-
TEST FOLIPMENT	11

Product Description

Equipment Under Test (EUT)

Type:	Indoor mini Drone system with UWB radio technology
Model:	Shooting Star Mini Drone
Trade Mark:	Intel
Serial no:	-
Software version:	-
Hardware version:	-

General Description

The Intel Shooting Star Mini Drone system is an UAV dedicated for aerial displays.

The Shooting Star Mini system contains three main components:

- 1. The Aerial Drone. This is the lightweight UAV that contains the LED light used to produce the show effects. No serial numbers.
- The Launch Pad provides the launch and charging facilities for fifteen (15) drones. No serial number.
- The Achors for control and indoor positioning. No serial number.

The system uses 6.5 GHz UWB radio module. The module is FCC certified and CE marked.

According to the manufacturer the highest clock frequency is under 108 MHz.

Samples and Modifications

No.	Name	Description
1	Launchpad	Normal sample, no modifications
2	Anchor	Normal sample, no modifications
3	Drones	15 drones, Normal sample, no modifications

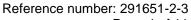
Specifications

Nominal frequency:	6489.6 MHz
Nominal Channel Bandwidth:	500 MHz
Highest Internal Frequency:	<108 MHz

Power Requirements

Launch Pad:

Rated voltage: 100 - 240 VAC ~ 50 - 60Hz


Rated current: 1.7 A

Anchor:

Rated voltage: 5 VDC (USB)

Aerial Drone:

3.7 VDC internal Li-ion battery Battery operated:

Page 4 of 11

Product Description

Cable Lengths and Types

Cable: Type: Length:

unshielded (L,N,PE) Mains power 0.3 - 5 m

USB cable <3 m unshielded

Peripherals

Huawei Power Bank model: AP007

Intel NUC PC model: NUC7i5BNK, S/N: G6BN81500TS1

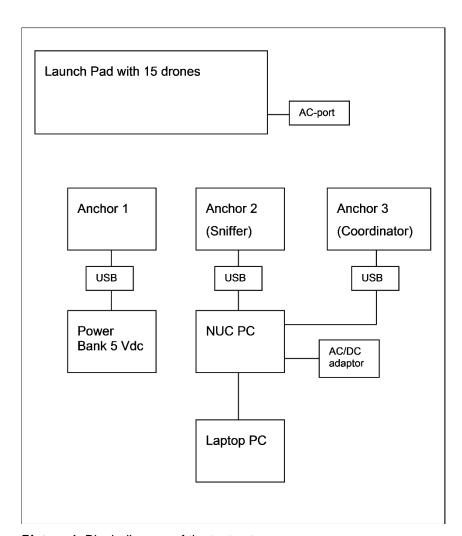
FSP AC/DC adaptor model: FSP065-10AABA

PC Laptop HP Elitebook 8540w

All peripherals were supplied by the manufacturer.

Disclaimer

This document is issued by the Company under its General Conditions of service accessible at http://www.sgs.com/terms and conditions.htm. attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.


Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. This document cannot be reproduced except in full, without prior approval of the Company.

EUT Test Conditions during Testing

Configuration of the EUT was made to correspond to the actual assembling conditions as far as possible. The functionality and the communication link were monitored with customer control program. Fifteen Aerial Drones were set on the Launch Pad for recharging. Rotors were not rotating during they were on the Launch Pad. This setup with 15 drones charging simultaneously and radio communications on, represents worst case mode of operation. Radiated emissions were also measured for the Aerial Drone alone in howering mode. The EUTs were also monitored with a video camera.

Picture 1. Block diagram of the test setup

Reference number: 291651-2-3 Page 7 of 11

Summary of Testing

Test Specification	Description of Test	Result
§15.207(a) / RSS-GEN 8.8	Conducted Emissions on Power Supply Lines	PASS

Test Facility

Testing Laboratory / address:	SGS Fimko Ltd
FCC registration number: 904175	Särkiniementie 3
	FI-00210, HELSINKI
	FINLAND
Test Site:	☐ Kara 10, ISED Canada registration number: 8708A-1
	☐ Kara 5, ISED Canada registration number: 8708A-2
	☐ Laru 3
	☐ Kallio 10

Reference number: 291651-2-3 Page 8 of 11

TEST RESULTS

Conducted Emissions In The Frequency Range 150 kHz - 30 MHz.

Standard: ANSI C63.10 (2013)

Tested by: MIH

Date: 27 August 2018

Measurement uncertainty: $\pm 2.9 \text{ dB}$ Level of confidence 95 % (k = 2)

FCC Rule: 15.207 (a)

RSS-GEN 8.8

Test plan

Conducted disturbance voltage was measured with an artificial main network from 150 kHz to 30 MHz with 4.5 kHz steps and a resolution bandwidth of 9 kHz. Measurements were carried out with peak and average detectors. During the test the EUT was powered from the separate power supply (115 VAC / 60 Hz) through the LISN.

	Conducted limit (dBµV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

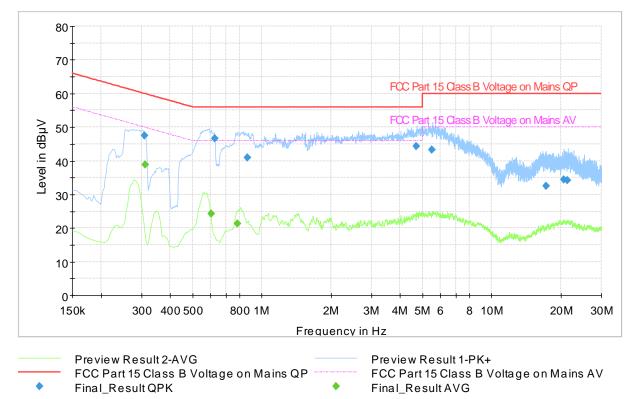


Figure 1. The measured results with peak- and average detectors at the Launch AC-port

Table 1. Final Quasipeak and Average results (Launch pad AC-port)

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.310000	47.53		59.97	12.44	1000.0	9.000	N	ON	10.2
0.311500		38.79	49.93	11.14	1000.0	9.000	N	ON	10.2
0.602250		24.17	46.00	21.83	1000.0	9.000	N	ON	10.3
0.623750	46.72		56.00	9.28	1000.0	9.000	N	ON	10.2
0.786000		21.23	46.00	24.77	1000.0	9.000	N	ON	10.3
0.869000	41.01		56.00	14.99	1000.0	9.000	N	ON	10.3
4.706750	44.34		56.00	11.66	1000.0	9.000	N	ON	10.4
5.497750	43.37		60.00	16.63	1000.0	9.000	N	ON	10.4
17.232750	32.47		60.00	27.53	1000.0	9.000	L1	ON	10.5
20.582750	34.36		60.00	25.64	1000.0	9.000	N	ON	10.7
21.407750	34.09		60.00	25.91	1000.0	9.000	N	ON	10.6

The presented final values contain the correction factors and can be directly compare with the limits.

FCC Part 15 Class B Voltage on Mains AV

Final_Result AVG

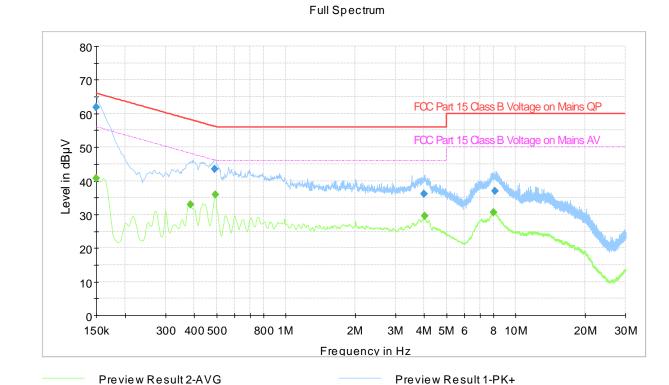
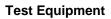


Figure 2. The measured results with peak- and average detectors at the NUC power adaptor


Table 2. Final Quasipeak and Average results (NUC power adaptor)

FCC Part 15 Class B Voltage on Mains QP

Final_Result QPK

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.150000		40.70	56.00	15.30	1000.0	9.000	L1	ON	9.9
0.150000	61.86		66.00	4.14	1000.0	9.000	N	ON	10.1
0.386500		32.87	48.14	15.27	1000.0	9.000	N	ON	10.3
0.491000	43.50		56.15	12.65	1000.0	9.000	N	ON	10.3
0.493250		35.98	46.11	10.13	1000.0	9.000	N	ON	10.3
3.982000	36.12		56.00	19.88	1000.0	9.000	L1	ON	10.0
4.015250		29.52	46.00	16.48	1000.0	9.000	L1	ON	10.0
8.023750		30.59	50.00	19.41	1000.0	9.000	N	ON	10.5
8.135750	37.03		60.00	22.97	1000.0	9.000	N	ON	10.5

The presented final values contain the correction factors and can be directly compare with the limits.

Conducted Emissions

Equipment	Manufacturer	Туре	Inv or serial	Prev Calib	Next Calib
TEST SOFTWARE	ROHDE & SCHWARZ	EMC-32	-	-	-
LISN	ROHDE & SCHWARZ	ENV216	inv:9611	2018-03-01	2019-03-01
LISN	ROHDE & SCHWARZ	ESH3-Z5	inv:8019	2018-05-24	2019-05-24
EMI TEST RECEIVER	ROHDE & SCHWARZ	ESU 26	inv:8453	2018-06-27	2019-06-27
ATTENUATOR	PASTERNACK	PE 7004-4	inv:10126	2017-12-01	2019-12-01
POWER SUPPLY	CALIFORNIA INSTR.	5001 iX Series II	inv:7826	-	-