

Page: 1 of 75

SAR TEST REPORT

The following samples were submitted and identified on behalf of the client as:

Equipment Under Test Smart Tracker

Marketing Name Circo mini2

Brand Name Athentek

Model No. AT502

Company Name Athentek Corp.

Company Address 7F., No.10, Ln. 360, Sec. 1, Neihu Rd, Neihu Dist., Taipei

City 114, Taiwan

Standards IEEE /ANSI C95.1, C95.3, IEEE 1528,

KDB447498D01v06, KDB941225D01v03r01, KDB248227D01v02r02, KDB865664D01v01r04,

KDB865664D02v01r02

FCC ID 2AHNY-AT502 Date of Receipt Feb. 24, 2016

Date of Test(s) Mar. 02, 2016 ~ Mar. 04, 2016

Date of Issue May. 03, 2016

In the configuration tested, the EUT complied with the standards specified above.

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Taiwan Electronic & Communication Laboratory or testing done by SGS Taiwan Electronic & Communication Laboratory in connection with distribution or use of the product described in this report must be approved by SGS Taiwan Electronic & Communication Laboratory in writing.

Signed on behalf of SGS					
Sr. Engineer	Supervisor				
afor Chen	Ricky Wrang				
Afu Chen	Ricky Huang				
Date: May. 03, 2016	Date: May. 03, 2016				

Page: 2 of 75

Revision History

Report Number	Revision	Description	Issue Date
EN/2016/20001	Rev.00	Initial creation of document	Apr. 07, 2016
EN/2016/20001	Rev.01	1 st modification	May. 03, 2016

Page: 3 of 75

Contents

1. General Information	4
1.1 Testing Laboratory	
1.2 Details of Applicant	
1.3 Description of EUT	
1.4 Test Environment	9
1.5 Operation Description	g
1.6 The SAR Measurement System	12
1.7 System Components	14
1.8 SAR System Verification	16
1.9 Tissue Simulant Fluid for the Frequency Band	18
1.10 Evaluation Procedures	19
1.11 Probe Calibration Procedures	20
1.12 Test Standards and Limits	23
2. Summary of Results	25
3. Instruments List	27
4. Measurements	28
5. SAR System Performance Verification	31
6. DAE & Probe Calibration Certificate	
7. Uncertainty Budget	
8. Phantom Description	
9. System Validation from Original Equipment Supplier	_
a. alaman . anaaman a adii.m =daibii.m aabbii. aabbii.	

Page: 4 of 75

1. General Information

1.1 Testing Laboratory

SGS Taiwan Ltd. Elec	SGS Taiwan Ltd. Electronics & Communication Laboratory				
No.134, Wu Kung Ro	ad, New Taipei Industrial Park, Wuku District, New Taipei				
City, Taiwan					
Tel	+886-2-2299-3279				
Fax	+886-2-2298-0488				
Internet	http://www.tw.sgs.com/				

1.2 Details of Applicant

Company Name	Athentek Corp.
Company Address	7F., No.10, Ln. 360, Sec. 1, Neihu Rd, Neihu Dist., Taipei City 114, Taiwan

Page: 5 of 75

1.3 Description of EUT

Equipment Under Test	Smart Tracker				
Marketing Name	Circo mini2				
Brand Name	Athentek				
Model No.	AT502				
FCC ID	2AHNY-AT502				
Mode of Operation	⊠GPRS ⊠WLAN802.11 b/g/n(2	20M) 🖂 BI	uetoo	th	
Duty Cycle	1/2 (1E 1/2.76 (1 1/4.1 (1 1/8.3 (1			Dn3UP) Dn2UP)	
	WLAN802.11 b/g/n(20M) 1				
	Bluetooth	1			
	GPRS850	824.2	_	848.8	
TX Frequency Range	GPRS1900	1850.2	_	1909.8	
(MHz)	WLAN802.11 b/g/n(20M)	2412	_	2462	
	Bluetooth	2402	_	2480	
	GPRS850	128	_	251	
Channel Number	GPRS1900	512	_	810	
(ARFCN)	WLAN802.11 b/g/n(20M)	1		11	
	Bluetooth	0	_	78	

Max. SAR (1 g) (Unit: W/Kg)					
Band	Measured	Reported	Channel	Position	
GPRS 850	1.220	1.467	251	Front side	
GPRS 1900	1.330	1.458	521	Front side	
WLAN802.11b	0.607	0.628	11	Front side	

Page: 6 of 75

GPRS conducted power table:

	Burst average power					
Max. Rated Avg. Power + Max. Tolerance (dBm)		33	30.5	29	27.5	
			1Dn1UP	1Dn2UP	1Dn3UP	1Dn4UP
EUT mode	Frequency (MHz)	T	Avg. (dBm)	Avg. (dBm)	Avg. (dBm)	Avg. (dBm)
GPRS	824.2	128	31.70	29.50	28.00	26.80
850	836.6	190	31.70	29.50	28.00	26.70
830	848.8	251	31.60	29.40	28.00	26.70
	Source-based time average power					
GPRS	824.2	128	22.67	23.48	23.74	23.79
850	836.6	190	22.67	23.48	23.74	23.69
830	848.8	251	22.57	23.38	23.74	23.69
The division factor compared to the number of TX time slot						
Div	Division factor		1 TX time slot	2 TX time slot	3 TX time slot	4 TX time slot
	vision ractor		-9.03	-6.02	-4.26	-3.01

	Burst average power					
Max. Rated Avg. Power + Max. Tolerance (dBm)		30	27.5	26	25	
			1Dn1UP	1Dn2UP	1Dn3UP	1Dn4UP
EUT mode	Frequency (MHz)	СН	Avg. (dBm)	Avg. (dBm)	Avg. (dBm)	Avg. (dBm)
GPRS	1850.2	512	28.30	26.80	25.60	24.30
1900	1880	661	28.50	27.00	25.50	24.20
1900	1909.8	810	28.70	26.70	25.20	23.80
S			ource-based tim	e average powe	er	
GPRS	1850.2	512	19.27	20.78	21.34	21.29
1900	1880	661	19.47	20.98	21.24	21.19
1900	1909.8	810	19.67	20.68	20.94	20.79
The division factor compared to the number of TX time slot						
Division factor		1 TX time slot -9.03	2 TX time slot -6.02	3 TX time slot -4.26	4 TX time slot -3.01	

Page: 7 of 75

WLAN802.11 b/g/n(20M) conducted power table:

	802.11 b	Max. Rated Avg.	Average Power Output (dBm)
СН	Frequency	Power + Max.	Data Rate (Mbps)
ОП	(MHz)	Tolerance (dBm)	1
1	2412	9	8.51
6	2437	9	8.77
11	2462	9	8.85

	802.11 g	Max. Rated Avg.	Average Power Output (dBm)
СН	Frequency	Power + Max.	Data Rate (Mbps)
СП	(MHz)	Tolerance (dBm)	6
1	2412	9	8.53
6	2437	9	8.6
11	2462	9	8.92

802	2.11 n(20M)	Max. Rated Avg.	Average Power Output (dBm)
СН	Frequency	Power + Max.	Data Rate (Mbps)
СП	(MHz)	Tolerance (dBm)	6.5
1	2412	9	8.71
6	2437	9	8.89
11	2462	9	8.97

Page: 8 of 75

Bluetooth maximum power table:

nam power table	•
Mode	Bluetooth (dBm)
	3
All	

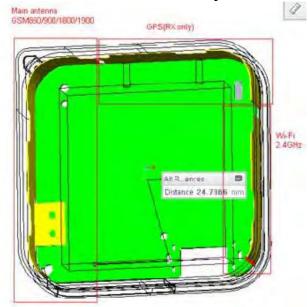
Page: 9 of 75

1.4 Test Environment

Ambient Temperature: 22±2° C Tissue Simulating Liquid: 22±2° C

1.5 Operation Description

1. WWAN (GPRS):


The EUT is controlled by using Radio Communication Tester(R&S CMU200), and the communication between the EUT and the tester is established by air link. **Configuration: front/back/top/bottom/left/right sides 5mm**

(Test configuration has been confirmed by FCC KDB inquiry 619936)

2. WLAN (b/g/n):

Use chipset specific software to control the EUT, and makes it transmit in maximum power. Measurements are performed respectively on the lowest, middle and highest channels of the operating band(s). The EUT is set to maximum power level during all tests, and at the beginning of each test the battery is fully charged.EUT was tested in the following configurations:

Configuration: front/back/top/bottom/left/right sides_5mm (Test configuration has been confirmed by FCC KDB inquiry 619936)

Front view of tracker

Page: 10 of 75

Note:

- **1.** SAR test for GPRS was performed on the maximum sourced-based time-averaged power.
- 2. Based on KDB447498D01,
 - (1) SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances≤ 50 mm are determined by:

$$\frac{\text{Max.tune up power(mW)}}{\text{Min.test separation distance(mm)}} \times \sqrt{f(\text{GHz})} \le 3$$

When the minimum test separation distance is < 5mm, 5mm is applied to determine SAR test exclusion.

- (2) For test separation distances > 50 mm, and the frequency at 100 MHz to 1500MHz, the SAR test exclusion threshold is determined according to the following, and as illustrated in Appendix B of KDB447498 D01. [(Threshold at 50mm in step1) + (test separation distance-50mm)x(^{f(MMx)}/₁₈₀)](mW),
- (3) For test separation distances > 50 mm, and the frequency at >1500MHz to 6GHz, the SAR test exclusion threshold is determined according to the following, and as illustrated in Appendix B of KDB447498 D01.

Mode		all sides				
Mode	Mode Max. power(dBm) BT 3	test separation distance (mm)	Exclusion calculation	Require SAR testing?		
ВТ	3	5	0.628	NO		

Page: 11 of 75

802.11b DSSS SAR Test Requirements:

- **3.** SAR is measured for 2.4 GHz 802.11b DSSS mode using the highest measured maximum output power channel, when the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- **4.** When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

802.11g/n OFDM SAR Test Exclusion Requirements:

- 5. SAR is not required for 802.11g/n since the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- **6.** WWAN and WLAN/BT use the different antenna path but WWAN and WLAN/BT can't be turned on at the same time, so the simultaneous transmission SAR evaluation is not required. (WLAN and BT can't be transmitted simultaneously.)
- 7. According to KDB447498 D01, testing of other required channels is not required when the reported 1-g SAR for the highest output channel is ≤ 0.8 W/kg, when the transmission band is ≤ 100 MHz.
- 8. According to KDB865664 D01, SAR measurement variability must be assessed for each frequency band. When the original highest measured SAR is ≥ 0.8 W/kg, repeated that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit)
- 9. Since the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is 0.628 ≤ 1.2 W/kg, SAR measurement for 802.11g/n is not required.

Page: 12 of 75

1.6 The SAR Measurement System

A block diagram of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY 5 professional system). The model EX3DV4 field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ ($|Ei|^2$)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant.

The DASY 5 system for performing compliance tests consists of the following items:

- 1. A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension is for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage intissue simulating liquid. The probe is equipped with an optical surface detector system.
- 3. A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

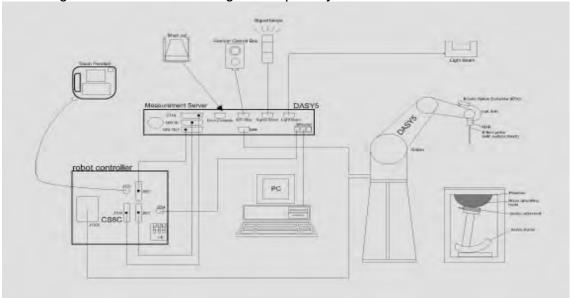


Fig. a The block diagram of SAR system

Page: 13 of 75

- 4. The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- 5. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 6. A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- 7. A computer operating Windows 7.
- 8. DASY 5 software.
- 9. Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- 10. The SAM twin phantom enabling testing left-hand and right-hand usage.
- 11. The device holder for handheld mobile phones.
- 12. Tissue simulating liquid mixed according to the given recipes.
- 13. Validation dipole kits allowing to validate the proper functioning of the system.

Page: 14 of 75

1.7 System Components

EX3DV4 E-Field Probe

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	Basic Broad Band Calibration in air Conversion Factors (CF) for HSL 835/1900/2450 MHz Additional CF for other liquids and frequencies upon request
Frequency	10 MHz to > 6 GHz
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic	$10 \mu W/g \text{ to > } 100 \text{ mW/g}$
Range	Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Tip diameter: 2.5 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

Page: 15 of 75

SAM PHANTOM V4.0C

SAM PHANT	7W V4.0C	
Construction	cover prevents evaporation of th	AM) phantom defined in IEEE tion of left and right hand phone usage at the flat phantom region. A ne liquid. Reference markings on setup of all predefined phantom
Shell Thickness	2 ± 0.2 mm	
Dimensions	Approx. 25 liters Height: 850 mm; Length: 1000 mm; Width: 500 mm	

DEVICE HOLDER

Construction	The device holder (Supporter) for Notebook is made by POM (polyoxymethylene resin), which is non-metal and non-conductive. The height can be adjusted to fit varies kind of notebooks.	
		Device Holder

Page: 16 of 75

1.8 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. These tests were done at 835/1900 /2450MHz. The tests were conducted on the same days as the measurement of the DUT. The obtained results from the system accuracy verification are displayed in the table 1 (SAR values are normalized to 1W forward power delivered to the dipole). During the tests, the ambient temperature of the laboratory was 21.7°C, the relative humidity was 62% and the liquid depth above the ear reference points was \geq 15 cm \pm 5 mm (frequency \leq 3 GHz) or \geq 10 cm \pm 5 mm (frequency > 3 G Hz) in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

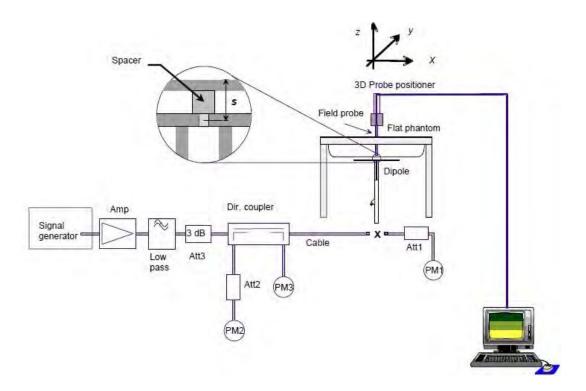


Fig. b The block diagram of system verification

Report No. : EN/2016/20001 Page : 17 of 75

Validation Kit	S/N	Frequ (Mł	-	1W Target SAR-1g (mW/g)	Measured SAR-1g (mW/g)	Measured SAR-1g normalized to 1W (mW/g)	Deviation (%)	Measured Date
D835V2	4d063	835	Body	9.28	2.34	9.36	0.86%	Mar. 02, 2016
D1900V2	5d027	1900 Body		39.3	10	40	1.78%	Mar. 03, 2016
D2450V2	727	2450	Body	51	13.2	52.8	3.53%	Mar. 04, 2016

Table 1. Results of system validation

Page: 18 of 75

1.9 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this body-simulant fluid were measured by using the Agilent Model 85070E Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjunction with Network Analyzer (30 KHz-6000 MHz).

All dielectric parameters of tissue simulates were measured within 24 hours of SAR measurements. The depth of the tissue simulant in the flat section of the phantom was \geq 15 cm \pm 5 mm (Frequency \leq 3G) or \geq 10 cm \pm 5 mm (Frequency >3G) during all tests. (Fig. 2)

Tissue Type	Measured Frequency (MHz)	Target Dielectric Constant, εr	Target Conductivity, σ (S/m)	Measured Dielectric Constant, Er	Measured Conductivity, σ (S/m)	% dev εr	% dev σ	Measurement Date
	824.2	55.242	0.969	55.881	1.003	-1.16%	-3.49%	
	835	55.200	0.970	55.819	1.017	-1.12%	-4.85%	Mar,2 2016
	836.6	55.195	0.972	55.812	1.018	-1.12%	-4.74%	IVIAI,2 2010
	848.8	55.158	0.987	55.699	1.03	-0.98%	-4.36%	
	1850.2	53.300	1.520	51.672	1.539	3.05%	-1.25%	
Body	1880	53.300	1.520	51.592	1.563	3.20%	-2.83%	Mar,3 2016
Body	1900	53.300	1.520	51.542	1.577	3.30%	-3.75%	IVIAI,3 2010
	1909.8	53.300	1.520	51.505	1.587	3.37%	-4.41%	
	2412	52.751	1.914	51.082	1.967	3.16%	-2.79%	
	2437	52.717	1.938	51.032	2.003	3.20%	-3.38%	Mar,4 2016
	2450	52.700	1.950	50.948	2.023	3.32%	-3.74%	IVIAI,4 2010
	2462	52.685	1.967	50.932	2.038	3.33%	-3.61%	

Table 2. Dielectric Parameters of Tissue Simulant Fluid

The composition of the tissue simulating liquid:

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
_				.					
Frequency (MHz)	Mode	ode DGMBE Water		Salt Preventol D-7		Cellulose Sugar		Total amount	
850	Body	_	631.68 g	11.72 g	1.2 g		600 g	1.0L(Kg)	
1900	Body	300.67 g	716.56 g	4.0 g	_	1	_	1.0L(Kg)	
2450	Body	301.7ml	698.3ml	_	_	-	_	1.0L(Kg)	

Table 3. Recipes for Tissue Simulating Liquid

Page: 19 of 75

1.10 Evaluation Procedures

The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan.
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1g and 10g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within –2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7x7x7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements.

The measured volume of 30x30x30mm contains about 30g of tissue.

Page: 20 of 75

The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

1.11 Probe Calibration Procedures

For the calibration of E-field probes in lossy liquids, an electric field with an accurately known field strength must be produced within the measured liquid. For standardization purposes it would be desirable if all measurements which are necessary to assess the correct field strength would be traceable to standardized measurement procedures. In the following two different calibration techniques are summarized:

1.11.1 Transfer Calibration with Temperature Probes

In lossy liquids the specific absorption rate (SAR) is related both to the electric field (E) and the temperature gradient ($\delta T / \delta t$) in the liquid.

$$SAR = \frac{\sigma}{\rho} |E|^2 = c \frac{\delta T}{\delta t}$$

whereby $\boldsymbol{\sigma}$ is the conductivity, $\boldsymbol{\rho}$ the density and \boldsymbol{c} the heat capacity of the liquid.

Hence, the electric field in lossy liquid can be measured indirectly by measuring the temperature gradient in the liquid. Non-disturbing temperature probes (optical probes or thermistor probes with resistive lines) with high spatial resolution (<1-2 mm) and fast reaction time (<1 s) are available and can be easily calibrated with high precision [1]. The setup and the exciting source have no influence on the calibration; only the relative positioning uncertainties of the standard temperature probe and the E-field probe to be calibrated must be considered. However, several problems limit the available accuracy of probe calibrations with temperature probes:

Page: 21 of 75

1. The temperature gradient is not directly measurable but must be evaluated from temperature measurements at different time steps. Special precaution is necessary to avoid measurement errors caused by temperature gradients due to energy equalizing effects or convection currents in the liquid. Such effects cannot be completely avoided, as the measured field itself destroys the thermal equilibrium in the liquid. With a careful setup these errors can be kept small.

- 2. The measured volume around the temperature probe is not well defined. It is difficult to calculate the energy transfer from a surrounding gradient temperature field into the probe. These effects must be considered, since temperature probes are calibrated in liquid with homogeneous temperatures. There is no traceable standard for temperature rise measurements.
- 3. The calibration depends on the assessment of the specific density, the heat capacity and the conductivity of the medium. While the specific density and heat capacity can be measured accurately with standardized procedures (~ 2% for c; much better for ρ), there is no standard for the measurement of the conductivity. Depending on the method and liquid, the error can well exceed $\pm 5\%$.
- 4. Temperature rise measurements are not very sensitive and therefore are often performed at a higher power level than the E-field measurements. The nonlinearities in the system (e.g., power measurements, different components, etc.) must be considered.

Considering these problems, the possible accuracy of the calibration of E-field probes with temperature gradient measurements in a carefully designed setup is about $\pm 10\%$ (RSS) [2]. Recently, a setup which is a combination of the waveguide techniques and the thermal measurements was presented in [3]. The estimated uncertainty of the setup is $\pm 5\%$ (RSS) when the same liquid is used for the calibration and for actual measurements and ± 7 -9% (RSS) when not, which is in good agreement with the estimates given in [2].

1.11.2 Calibration with Analytical Fields

In this method a technical setup is used in which the field can be calculated analytically from measurements of other physical magnitudes (e.g., input power). This corresponds to the standard field method for probe calibration in air; however, there is no standard defined for fields in lossy liquids. When using calculated fields in lossy liquids for probe calibration, several

when using calculated fields in lossy liquids for probe calibration, several points must be considered in the assessment of the uncertainty:

- 1. The setup must enable accurate determination of the incident power.
- 2. The accuracy of the calculated field strength will depend on the assessment of the dielectric parameters of the liquid.

Page: 22 of 75

3. Due to the small wavelength in liquids with high permittivity, even small setups might be above the resonant cutoff frequencies. The field distribution in the setup must be carefully checked for conformity with the theoretical field distribution.

References

- 1. N. Kuster, Q. Balzano, and J.C. Lin, Eds., *Mobile Communications Safety*, Chapman & Hall, London, 1997.
- K. Meier, M. Burkhardt, T. Schmid, and N. Kuster, \Broadband calibration of E-field probes in lossy media", *IEEE Transactions on Microwave Theory and Techniques*, vol. 44, no. 10, pp. 1954{1962, Oct. 1996.
- 3. K. Jokela, P. Hyysalo, and L. Puranen, \Calibration of specific absorption rate (SAR) probes in waveguide at 900 MHz", *IEEE Transactions on Instrumentation and Measurements*, vol. 47, no. 2, pp. 432{438, Apr. 1998.

Page: 23 of 75

1.12 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.1, By the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

- 1. Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube).
- Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.
- 3. Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not

Page: 24 of 75

exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section. (Table 4.)

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR (Brain)	1.60 m W/g	8.00 m W/g
Spatial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g
Spatial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g

Table 4. RF exposure limits

Notes:

- 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- 2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Page: 25 of 75

2. Summary of Results

GPRS 850

Mode	Position	Distanc e (mm)	СН	CH Freq. (MHz)	Max. Rated Avg. Power + Max. Tolerance (dBm)	Measured Avg. Power	Scaling	Averaged SAR over 1g (W/kg)		Plot page
		()				(dBm)		Measured	Reported	
	Front side	5mm	128	824.2	27.5	26.80	17.49%	1.010	1.187	-
	Front side	5mm	190	836.6	27.5	26.70	20.23%	1.150	1.383	-
	Front side	5mm	251	848.8	27.5	26.70	20.23%	1.220	1.467	28
	Front side*	5mm	251	848.8	27.5	26.70	20.23%	1.160	1.395	-
0000000	Back side	5mm	128	824.2	27.5	26.80	17.49%	0.664	0.780	-
GPRS 850 (1Dn4UP)	Top side	5mm	128	824.2	27.5	26.80	17.49%	0.573	0.673	-
(1511461)	Bottom side	5mm	128	824.2	27.5	26.80	17.49%	0.198	0.233	-
	Left side	5mm	128	824.2	27.5	26.80	17.49%	0.047	0.055	-
	Right side	5mm	128	824.2	27.5	26.80	17.49%	0.890	1.046	-
	Right side	5mm	190	836.6	27.5	26.70	20.23%	0.910	1.094	-
	Right side	5mm	251	848.8	27.5	26.70	20.23%	0.950	1.142	-

^{* -} repeated at the highest SAR measurement according to the KDB 865664 D01

GPRS 1900

Mode	Position	Distanc e (mm)	CH	CH Freq.	Max. Rated Avg. Power + Max. Tolerance (dBm)	Measured Avg. Power	d Scaling	Averaged 1 (W/	Plot page	
		(11111)			Toloranoo (abiii)	(dBm)		Measured	Reported	
	Front side	5mm	512	1850.2	26	25.60	9.65%	1.330	1.458	29
	Front side	5mm	661	1880	26	25.50	12.20%	1.140	1.279	-
	Front side	5mm	810	1909.8	26	25.20	20.23%	1.200	1.443	-
	Front side*	5mm	512	1850.2	26	25.60	9.65%	1.290	1.414	-
0000 / 000	Back side	5mm	512	1850.2	26	25.60	9.65%	1.020	1.118	-
GPRS 1900 (1Dn3Up)	Back side	5mm	661	1880	26	25.50	12.20%	0.984	1.104	-
(тызор)	Back side	5mm	810	1909.8	26	25.20	20.23%	0.994	1.195	-
	Top side	5mm	512	1850.2	26	25.60	9.65%	0.718	0.787	-
	Bottom side	5mm	512	1850.2	26	25.60	9.65%	0.561	0.615	-
	Left side	5mm	512	1850.2	26	25.60	9.65%	0.115	0.126	-
	Right side	5mm	512	1850.2	26	25.60	9.65%	0.332	0.364	-

^{* -} repeated at the highest SAR measurement according to the KDB 865664 D01

Page: 26 of 75

WLAN b

Mode	Position	Distanc e (mm)	СН	Freq. (MHz)	Max. Rated Avg. Power + Max. Tolerance (dBm)	Measured Avg. Power	Scaling	(۷۷/	g kg)	Plot page
						(dBm)		Measured	Reported	
	Front side	5mm	1	2412	9	8.51	11.94%	0.557	0.624	-
	Front side	5mm	6	2437	9	8.77	5.44%	0.549	0.579	-
	Front side	5mm	11	2462	9	8.85	3.51%	0.607	0.628	30
WLAN802.11b	Back side	5mm	11	2462	9	8.85	3.51%	0.509	0.527	-
WLANOUZ.IID	Top side	5mm	11	2462	9	8.85	3.51%	0.198	0.205	-
	Bottom side	5mm	11	2462	9	8.85	3.51%	0.210	0.217	-
	Left side	5mm	11	2462	9	8.85	3.51%	0.186	0.193	-
	Right side	5mm	11	2462	9	8.85	3.51%	0.057	0.058	-

Page: 27 of 75

3. Instruments List

	LIST				
Manufacturer	Device	Type	Serial number	Date of last calibration	Date of next calibration
Schmid & Partner Engineering AG	Dosimetric E-Field Probe	EX3DV4	3770	Apr.28,2015	Apr.27,2016
Schmid & Partner Engineering AG	System Validation Dipole	D835V2	4d063	Aug.24,2015	Aug.23,2016
		D1900V2	5d027	Apr.29,2015	Apr.28,2016
		D2450V2	727	Apr.22,2015	Apr.21,2016
Schmid & Partner Engineering AG	Data acquisition Electronics	DAE4	856	Aug.24,2015	Aug.23,2016
Schmid & Partner Engineering AG	Software	DASY 52 V52.8.8	N/A	Calibration not required	Calibration not required
Schmid & Partner Engineering AG	Phantom	SAM	N/A	Calibration not required	Calibration not required
Agilent	Network Analyzer	E5071C	MY46107530	Jan.07,2016	Jan.06,2017
Agilent	Dielectric Probe Kit	85070E	MY44300677	Calibration not required	Calibration not required
Agilent	Dual-directional coupler	772D	MY46151242	Jul.15,2015	Jul.14,2016
		778D	MY48220468	Jul.16,2015	Jul.15,2016
Agilent	RF Signal Generator	N5181A	MY50144143	Jul.16,2015	Jul.15,2016
Agilent	Power Meter	E4417A	MY52240003	Jul.15,2015	Jul.14,2016
Agilent	Power Sensor	E9301H	MY52200004	Jul.15,2015	Jul.14,2016
TECPEL	Digital thermometer	DTM-303A	TP130075	Mar.27,2015	Mar.26,2016
R&S	Radio Communication Test	CMU200	122498	Aug.26,2015	Aug.25,2016
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				

Page: 28 of 75

4. Measurements

Date: 2016/3/2

GPRS 850_Body_Front_CH 251_5mm

Communication System: GPRS (1Dn4Up); Frequency: 848.8 MHz

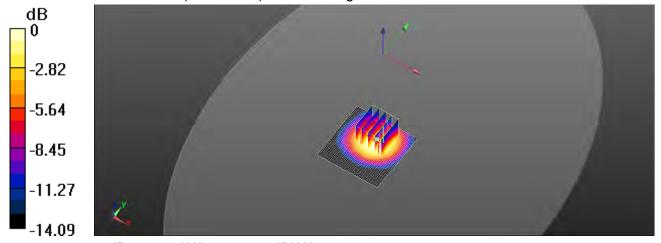
Medium parameters used: f = 849 MHz; $\sigma = 1.03$ S/m; $\varepsilon_r = 55.699$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3770; ConvF(9.17, 9.17, 9.17); Calibrated: 2015/4/28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn856; Calibrated: 2015/8/24
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (51x51x1): Interpolated grid: dx=15 mm, dy=15 mm Maximum value of SAR (interpolated) = 1.89 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 27.19 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 2.09 W/kg

SAR(1 g) = 1.22 W/kg; SAR(10 g) = 0.767 W/kg Maximum value of SAR (measured) = 1.63 W/kg

0 dB = 1.63 W/kg = 2.12 dBW/kg

Page: 29 of 75

Date: 2016/3/3

GPRS 1900_Body_Front_CH 512_5mm

Communication System: GPRS (1Dn3Up); Frequency: 1850.2 MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.539 \text{ S/m}$; $\epsilon_r = 51.672$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(7.59, 7.59, 7.59); Calibrated: 2015/4/28;

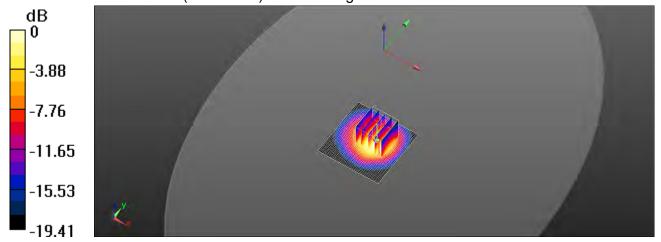
• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn856; Calibrated: 2015/8/24

Phantom: Body

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (51x51x1): Interpolated grid: dx=15 mm, dy=15 mm Maximum value of SAR (interpolated) = 1.89 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 22.72 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 2.37 W/kg

SAR(1 g) = 1.33 W/kg; SAR(10 g) = 0.699 W/kg Maximum value of SAR (measured) = 1.84 W/kg

0 dB = 1.84 W/kg = 2.65 dBW/kg

Page: 30 of 75

Date: 2016/3/4

WLAN802.11 b_Body_Front_CH 11_5mm

Communication System: WLAN 2.45G; Frequency: 2462 MHz

Medium parameters used: f = 2462 MHz; $\sigma = 2.103 \text{ S/m}$; $\epsilon_r = 53.135$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(7.21, 7.21, 7.21); Calibrated: 2015/4/28;

Sensor-Surface: 2mm (Mechanical Surface Detection)

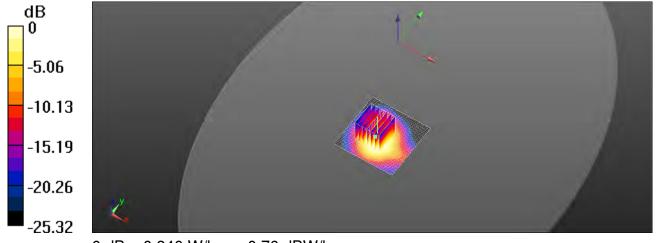
Electronics: DAE4 Sn856; Calibrated: 2015/8/24

Phantom: Body

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (61x61x1): Interpolated grid: dx=12 mm, dy=12 mm Maximum value of SAR (interpolated) = 0.985 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 7.770 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.607 W/kg; SAR(10 g) = 0.319 W/kg

Maximum value of SAR (measured) = 0.840 W/kg

0 dB = 0.840 W/kg = -0.76 dBW/kg

Page: 31 of 75

5. SAR System Performance Verification

Date: 2016/3/2

Dipole 835 MHz_SN:4d063_Body

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.017$ S/m; $\varepsilon_r = 55.819$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(9.17, 9.17, 9.17); Calibrated: 2015/4/28;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

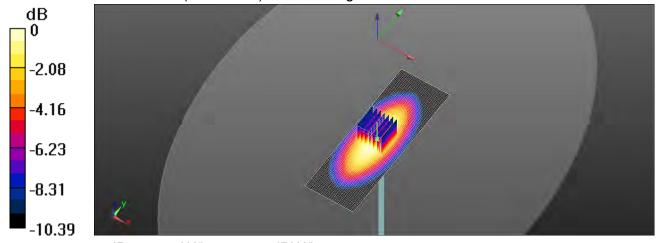
Electronics: DAE4 Sn856; Calibrated: 2015/8/24

Phantom: Body

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Pin=250mW/Area Scan (41x121x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 2.95 W/kg


Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.09 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.47 W/kg

SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.53 W/kg Maximum value of SAR (measured) = 2.96 W/kg

0 dB = 2.96 W/kg = 4.71 dBW/kg

Page: 32 of 75

Date: 2016/3/3

Dipole 1900 MHz SN:5d027 Body

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.577 \text{ S/m}$; $\varepsilon_r = 51.542$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(7.59, 7.59, 7.59); Calibrated: 2015/4/28;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

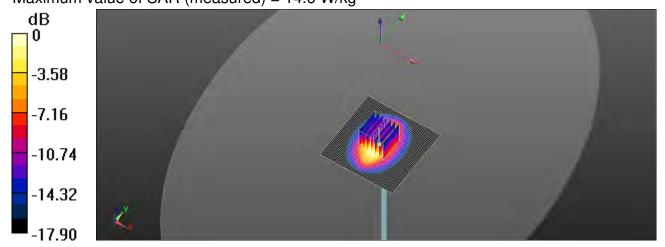
Electronics: DAE4 Sn856; Calibrated: 2015/8/24

Phantom: Body

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 14.7 W/kg


Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.36 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 10 W/kg; SAR(10 g) = 5.11 W/kg Maximum value of SAR (measured) = 14.6 W/kg

0 dB = 14.6 W/kg = 11.64 dBW/kg

Page: 33 of 75

Date: 2016/3/4

Dipole 2450 MHz_SN:727_Body

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.023 \text{ S/m}$; $\varepsilon_r = 50.948$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3770; ConvF(7.21, 7.21, 7.21); Calibrated: 2015/4/28;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

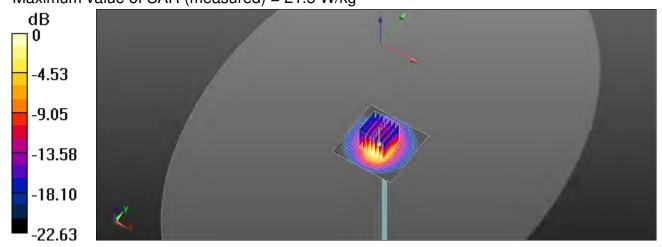
Electronics: DAE4 Sn856; Calibrated: 2015/8/24

Phantom: Body

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 21.9 W/kg


Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.6 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.23 W/kg Maximum value of SAR (measured) = 21.5 W/kg

0 dB = 21.5 W/kg = 13.32 dBW/kg

Page: 34 of 75

6. DAE & Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kailbrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client SGS-TW (Auden)

Certificate No: DAE4-856_Aug15

CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BM - SN: 856 Object Calibration procedure(s) QA CAL-06.V29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: August 24, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 03-Oct-14 (No:15573) Oct-15 ID a Check Date (in house) Secondary Standards Scheduled Check SE UWS 053 AA 1001 05-Jan-15 (in house check) Auto DAE Calibration Unit In house check: Jan-16 Calibrator Box V2.1 SE UMS 006 AA 1002 06-Jan-15 (in house check) In house check: Jan-16 Name Function Signature Calibrated by: Eric Hainfeld Technician Deputy Technical Manager Approved by: Fin Bomholt Issued: August 24, 2015

Certificate No: DAE4-856_Aug15

Page 1 of 5

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Page: 35 of 75

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdiensl Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity. Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating

Certificate No. DAE4-956_Auri 15

Page 2 of 5

Page: 36 of 75

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB =

Low Range: 1LSB = 6.1μV , 61nV ,

Calibration Factors	x	Υ	Z
High Range	403.449 ± 0.02% (k=2)	404.566 ± 0.02% (k=2)	403.891 ± 0.02% (k=2)
Low Range	3.97700 ± 1.50% (k=2)	3.97782 ± 1.50% (k=2)	3.97836 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	52.5°±1°

Page: 37 of 75

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	199992.51	-4.66	-0.00
Channel X + Input	19999.73	-1.55	-0.01
Channel X - Input	-20000.27	0.65	-0.00
Channel Y + Input	199994.28	-2.70	-0.00
Channel Y + Input	19998.57	-2.81	-0.01
Channel Y - Input	-20000.71	0.04	-0.00
Channel Z + Input	199992.81	-4.34	-0.00
Channel Z + Input	19999.01	-2.35	-0.01
Channel Z - Input	-20000.10	0.80	-0.00

Low Range	Reading (μV)	Difference (μV)	Error (%)	
Channel X + Input	2001.37	0.19	0.01	
Channel X + Input	201.64	0.16	0.08	
Channel X - Input	-198.09	0.34	-0.17	
Channel Y + Input	2001.06	-0.21	-0.01	
Channel Y + Input	200.99	-0.56	-0.28	
Channel Y - Input	-198.69	-0.28	0.14	
Channel Z + Input	2001.06	-0.14	-0.01	
Channel Z + Input	200.61	-0.93	-0.46	
Channel Z - Input	-200.00	-1.57	0.79	

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-15.01	-16.59
	- 200	17.32	15.62
Channel Y	200	-1.48	-2.07
-	- 200	0.66	0.22
Channel Z	200	9.97	10.11
	- 200	-12.79	-13.13

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	2.90	-2.95
Channel Y	200	6.94	-	3.00
Channel Z	200	9.06	5.52	-

Certificate No: DAE4-856_Aug15

Page: 38 of 75

4. AD-Converter Values with inputs shorted

	High Range (LSB)	Low Range (LSB)
Channel X	16218	15903
Channel Y	15939	16589
Channel Z	15873	16638

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.50	-0.61	1.57	0.38
Channel Y	-0.24	-1.01	1.18	0.39
Channel Z	-0.85	-1.73	0.44	0.36

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)	
Channel X	200	200	
Channel Y	200	200	
Channel Z	200	200	

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	values Switched off (mA) St		Transmitting (mA)	
Supply (+ Vcc)	+0.01	+6	+14	
Supply (- Vcc)	-0.01	-8	-9	

Certificate No: DAE4-856_Aug15

Page: 39 of 75

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: EX3-3770_Apr15

Client

SGS-TW (Auden)

CAL	IBRAT	ION	CERT	IFIC/	ATE

Object EX3DV4 - SN:3770

Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date: April 28, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	1D	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Name
Function
Signature

Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: April 30, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3770_Apr15 Page 1 of 11

Page: 40 of 75

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Accreditation No.: SCS 0108

C Service sulsse d'étalonnage

S Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization ip ip rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- iEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices; Measurement Techniques" June 2013
- Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax.y,z; Bx.y,z; Cx.y,z; Dx.y,z; VRx.y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3770_Apr15

Page 2 of 11

Page: 41 of 75

EX3DV4 – SN:3770 April 28, 2015

Probe EX3DV4

SN:3770

Manufactured: July 6, 2010 Calibrated: April 28, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Page: 42 of 75

EX3DV4-SN:3770 April 28, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3770

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.31	0.62	0.40	± 10.1 %
DCP (mV) ^B	105.3	100.7	101.6	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc
			dB	dB√μV		dB	mV	(k=2)
0	CW	Х	0.0	0.0	1.0	0.00	145.1	±3.8 %
		Y	0.0	0.0	1.0		129.4	
		Z	0.0	0.0	1.0		138.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^] The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter: uncertainty not required.

⁸ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the

Page: 43 of 75

EX3DV4-SN:3770 April 28, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3770

Calibration Parameter Determined in Head Tissue Simulating Media

alibration Parameter Determined in Head Tissue Simulating Media									
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)	
750	41.9	0.89	9.53	9.53	9.53	0.26	1.28	± 12.0 %	
835	41.5	0.90	9.13	9.13	9.13	0.21	1.53	± 12.0 %	
900	41.5	0.97	8.89	8.89	8.89	0.23	1.38	± 12.0 %	
1450	40.5	1.20	8.19	8.19	8.19	0.18	1.59	± 12.0 %	
1750	40.1	1.37	8.04	8.04	8.04	0.38	0.80	± 12.0 %	
1900	40.0	1.40	7.82	7.82	7.82	0.36	0.80	± 12.0 %	
2000	40.0	1.40	7.81	7.81	7.81	0.36	0.80	± 12.0 %	
2300	39.5	1.67	7.47	7.47	7.47	0.27	0.96	± 12.0 %	
2450	39.2	1.80	7.16	7.16	7.16	0.34	0.80	± 12.0 %	
2600	39.0	1.96	6.85	6.85	6.85	0.34	0.92	± 12.0 %	
5250	35.9	4.71	5.27	5.27	5.27	0.30_	1.80	± 13.1 %	
5600	35.5	5.07	4.65	4.65	4.65	0.35	1.80	± 13.1 %	
5750	35.4	5.22	4.92	4.92	4.92	0.40	1.80	± 13.1 %	

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

**At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

**Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Page: 44 of 75

April 28, 2015 EX3DV4-SN:3770

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3770

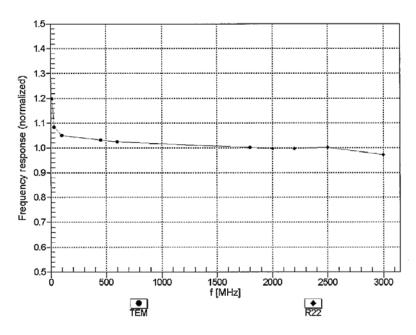
Calibration Parameter Determined in Body Tissue Simulating Media

	raiameter be						G	Hand
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.30	9.30	9.30	0.25	1.38	± 12.0 %
835	55.2	0.97	9.17	9.17	9.17	0.34	1.05	± 12.0 %
900	55.0	1.05	8.91	8.91	8.91	0.30	1.20	± 12.0 %
1450	54.0	1.30	8.12	8.12	8.12	0.18	1.62	± 12.0 %
1750	53.4	1.49	7.79	7.79	7.79	0.44	0.80	± 12.0 %
1900	53.3	1.52	7.59	7.59	7.59	0.44	0.80	± 12.0 %
2000	53.3	1.52	7.73	7.73	7.73	0.42	0.80	± 12.0 %
2300	52.9	1.81	7.32	7.32	7.32	0.41	0.80	± 12.0 %
2450	52.7	1.95	7.21	7.21	7.21	0.31	0.80	± 12.0 %
2600	52.5	2.16	6.96	6.96	6.96	0.27	0.80	± 12.0 %
5250	48.9	5.36	4.70	4.70	4.70	0.35	1.90	± 13.1 %
5600	48.5	5.77	4.03	4.03	4.03	0.45	1.90	± 13.1 %
5750	48.3	5.94	4.33	4.33	4.33	0.50	1.90	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

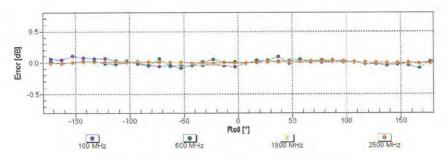

Page 6 of 11

Page: 45 of 75

April 28, 2015 EX3DV4-SN:3770

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

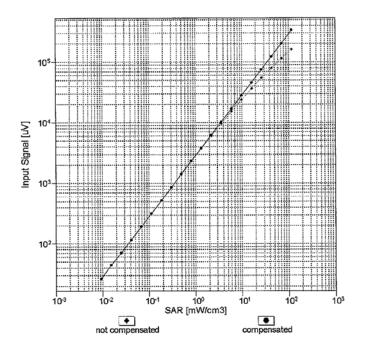


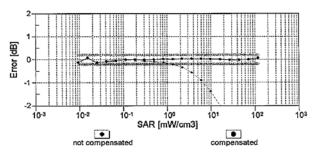
Page: 46 of 75

EX3DV4- SN:3770 April 28, 2015

Receiving Pattern (ϕ), $9 = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)



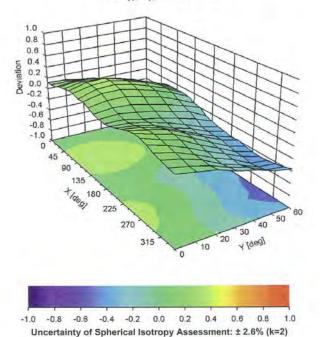

Page: 47 of 75

EX3DV4-SN:3770

April 28, 2015

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Page: 48 of 75


EX3DV4- SN:3770 April 28, 2015

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (φ, θ), f = 900 MHz

Page: 49 of 75

EX3DV4- SN:3770 April 28, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3770

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-32.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Page: 50 of 75

7. Uncertainty Budget

Measurement Uncertainty evaluation template for DUT SAR test (0.3-3G)

A	С	D	е		f	g	h=c * f / e	i=c * g / e	k
Source of Uncertainty	Tolerance/ Uncertainty	Probabilit y	Div	Div Value	ci (1g)	ci (10g)	Standard uncertainty	Standard uncertainty	vi, or Veff
Measurement system									
Probe calibration	6.00%	N	1	1	1	1	6.00%	6.00%	∞
Isotropy , Axial	3.50%	R	√3	1.732	1	1	2.02%	2.02%	∞
Isotropy, Hemispherical	9.60%	R	√3	1.732	1	1	5.54%	5.54%	∞
Boundary Effect	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Linearity	4.70%	R	√3	1.732	1	1	2.71%	2.71%	8
Detection Limits	1.00%	R	√3	1.732	1	1	0.58%	0.58%	8
Readout Electronics	0.30%	N	1	1	1	1	0.30%	0.30%	8
Response time	0.80%	R	√3	1.732	1	1	0.46%	0.46%	∞
Integration Time	2.60%	R	√3	1.732	1	1	1.50%	1.50%	∞
Measurement drift (class A evaluation)	1.75%	R	√3	1.732	1	1	1.01%	1.01%	∞
RF ambient condition -	3.00%	R	√3	1.732	1	1	1.73%	1.73%	∞
RF ambient conditions - reflections	3.00%	R	√3	1.732	1	1	1.73%	1.73%	∞
Probe positioner Mechanical restrictions	0.40%	R	√3	1.732	1	1	0.23%	0.23%	∞
Probe Positioning with respect to phantom	2.90%	R	√3	1.732	1	1	1.67%	1.67%	∞
Post-processing	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Max SAR Eval	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Test Sample related									
Test sample positioning	2.90%	N	1	1	1	1	2.90%	2.90%	M-1
Device Holder Uncertainty	3.60%	N	1	1	1	1	3.60%	3.60%	M-1
Drift of output power	5.00%	R	√3	1.732	1	1	2.89%	2.89%	8
Phantom and Setup									
Phantom Uncertainty	4.00%	R	√3	1.732	1	1	2.31%	2.31%	∞
Deviation from reference liquid target ε 'r(Body)	3.37%	N	1	1	0.64	0.43	2.16%	1.45%	М
Deviation from reference liquid target σ (Body)	4.85%	N	1	1	0.6	0.49	2.91%	2.38%	М
Combined standard uncertainty		RSS					11.90%	11.66%	
Expant uncertainty (95% confidence							23.79%	23.32%	

Page: 51 of 75

8. Phantom Description

Schmid & Panner Engineering AG Zeughausstasse 42, 8004 Zunch, Switzerland Phone +41 1 245 9709, Fax +41 1 245 9779 http://www.speag.com

Certificate of Conformity / First Article Inspection

ttens	SAM Twin Phantom V4.0	
Type No	QD 000 P40 C	
Series No	TP-1150 and higher	
Manufacturer	SPEAG Zeughausstresse 43 CH-8004 Zorich Switzerland	

Tests

Tests
The series production process used allows the amission to test of first articles.
Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been referred using further series items (called samples) or are tested at each item.

Test	Requirement	Details	Units tested
Dintensions	Compliant with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness of shell	Compliant with the requirements according to the standards	2mm +/- 0,2mm in flat and specific areas of head section	First article, Samples, TP-1314 ff.
Material thickness at ERP	Compliant with the requirements according to the standards	6mm +/- 0.2mm at ERP	First article, All items
Material parameters	Dielectric parameters for required frequencies	300 MHz – 6 GHz: Relative permittivity < 5, Loss tangent < 0.05	Material samples
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards if handled and cleaned according to the instructions. Observe technical Note for material competibility.	DEGMBE based simulating liquids	Pre-series, First article, Material samples
Sagging	Compliant with the requirements according to the standards. Sagging of the flat section when filled with tissue simulating liquid.	< 1% typical < 0.8% if filled with 155mm of HSL900 and without DUT below	Prototypes, Sample testing

- Standards [1] CENELEC EN 50361 [2] IEEE Std 1528-2003 [3] IEC 62209 Part I

- FCC OET Bulletin 85, Supplement C, Edition 01-01
 The IT IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of the other documents.

Signature / Stamp

Conformity
Based on the sample tasts above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standards [1] to [4].

07.07.2005

Schmitt & Pagner Engineering AQ Zetigheussysses 43, 9004 Zorigh Geitzert Proces 441, 3 PK STROW Fac-961-7 245, 9773

Drur No. 881 - QQ 000 P40 C-F

Page: 52 of 75

9. System Validation from Original Equipment Supplier

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrease 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di turatura
S swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (BAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilisteral Agreement for the recognition of calibration certificates

iont SGS-TW (Auden) Certificate No: D835V2-4d063_Aug15

CALIBRATION CERTIFICATE D835V2 - SN: 4d063 Object QA CAL-05.v9 Calibration procedurers) Calibration procedure for dipole validation kits above 700 MHz Cafforation date: August 24, 2015 This calibration cartificate documents the traceability to national standards, which regize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility, environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID # Cal Date (Certificate No.) Primary Standards Scheduled Calibration 0.837480704 Power meter EPM-442A 07-Oct-14 (No. 217-02020) Det-15 Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15. 5N: 5058 (20A) 01-Apr-15 (No. 217-02131) Reference 20 dB Attenuator Mar-15 Type-N mismatch combination SN: 5047.2 / 06327 01-April 5 (No. 217-02134) Marte 30-Dec-14 (No. ES3-3205_Dec14) Reference Probe ESSDV3 SN: 3205 Dec-15 SN: 601 17-Aug-15 (No. DAE4-601, Aug15) Aug-16 Secondary Standards DI Scheduled Check Check Date (in house) RE generaliza R&S SMT-06 04-Aug-89 (in house check Oct-13) In house check. Oct-16 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-15 Function Californied by: Michael Weber Laboratory Teoricidan Kalla Pokovic Approved by: Technica Manager Issued August 25, 2015 This calibration partificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d063_Aug15

Page 1 of 8

Page: 53 of 75

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausetrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kalibrierdies Service suisse d'étalonness C Servicio evizzero di teretura Swiss Calibration Service

Accordination No.: SCS 0106

According by the Swim Accordington Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA. Multilateral Agreement for the recognition of califfication certificates

Glossary:

TSL ConvF N/A

tissue simulating liquid

sensitivity in TSL / NORM x.y.z. not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques*, June 2013
- ib) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless. communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)*, March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms priented parallel to the body axis.
- Feed Point Impedance and Relum Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Contribate No: DB35V2-4dB63 Aug 15

Page 2 of E

Page: 54 of 75

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
DAST VERSION	DASTS	V02.8.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.9 ± 6 %	0.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.11 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.52 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.97 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.1 ± 6 %	1.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.28 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.11 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d063_Aug15

Page 3 of 8

Page: 55 of 75

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.3 Ω - 1.7 jΩ
Return Loss	- 33.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.9 Ω - 2.7 jΩ
Return Loss	- 29.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.394 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the cipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	November 27, 2006		

Certificate No: D835V2-4d063_Aug15

Page: 56 of 75

DASY5 Validation Report for Head TSL

Date: 21.08.2015

Test Laboratory: SPEAG, Zurich, Switzerland

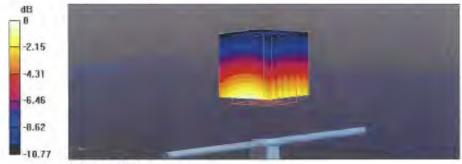
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d063

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.93$ S/m; $\epsilon_r = 41.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

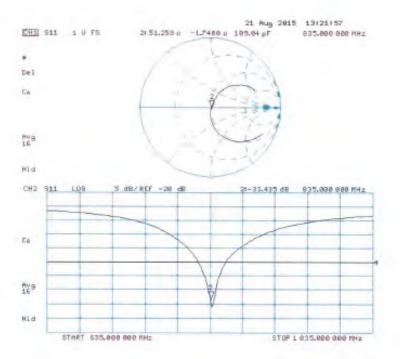
- Probe: ES3DV3 SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 17.08,2015
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.92 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.44 W/kg SAR(1 g) = 2.33 W/kg; SAR(10 g) = 1.52 W/kg

Maximum value of SAR (measured) = 2.73 W/kg

0 dB = 2.73 W/kg = 4.36 dBW/kg


Certificate No: D635V2-4d063_Aug15

Page 5 of 8

Page: 57 of 75

Impedance Measurement Plot for Head TSL

Page: 58 of 75

DASY5 Validation Report for Body TSL

Date: 24.08:2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d063

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.02$ S/m; $\epsilon_c = 56.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 17.08.2015
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

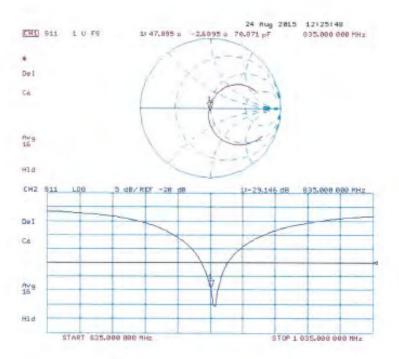
Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.07 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.52 W/kg

SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 2.81 W/kg



0 dB = 2.81 W/kg = 4.49 dBW/kg

Page: 59 of 75

Impedance Measurement Plot for Body TSL

Page: 60 of 75

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

SGS-TW (Auden)

Certificate No: D1900V2-5d027_Apr15

CALIBRATION CERTIFICATE Object D1900V2 - SN:5d027 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz April 29, 2015 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Reference 20 dB Attenuator SN: 5058 (20k) 01-Apr-15 (No. 217-02131) Mar-16 Type-N mismatch combination SN: 5047.2 / 06327 01-Apr-15 (No. 217-02134) Mar-16 Reference Probe ES3DV3 SN: 3205 30-Dec-14 (No. ES3-3205 Dec14) Dec-15 DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 ID# Check Date (in house) Scheduled Check Secondary Standards RF generator R&S SMT-06 04-Aug-99 (in house check Oct-13) In house check: Oct-16 100005 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-15 Function Name Claudio Leubler Laboratory Technician Calibrated by: Katja Pokovic Technical Manager Approved by: Issued: April 29, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D1900V2-5d027_Apr15

Page 1 of 8

Page: 61 of 75

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst.
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d027_Apr15

Page 2 of 8

Page: 62 of 75

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.78 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d027_Apr15

Page: 63 of 75

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$50.2 \Omega + 2.5 j\Omega$
Return Loss	- 32.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.5 Ω + 2.5 jΩ
Return Loss	- 27.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.197 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 17, 2002

Certificate No: D1900V2-5d027_Apr15

Page: 64 of 75

DASY5 Validation Report for Head TSL

Date: 29.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

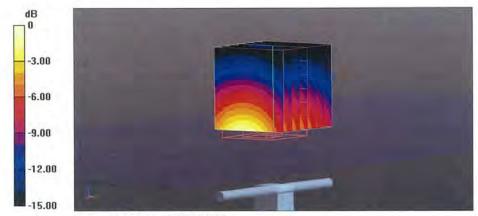
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d027

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.37$ S/m; $\varepsilon_r = 38.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

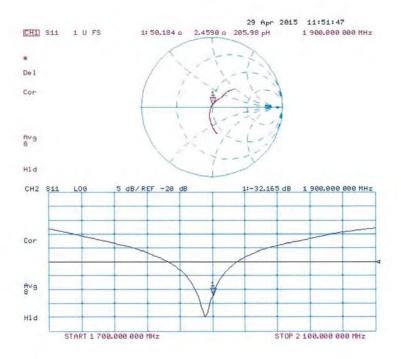
- Probe: ES3DV3 SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.71 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.3 W/kgMaximum value of SAR (measured) = 12.3 W/kg

0 dB = 12.3 W/kg = 10.90 dBW/kg


Certificate No: D1900V2-5d027_Apr15

Page 5 of 8

Page: 65 of 75

Impedance Measurement Plot for Head TSL

Page: 66 of 75

DASY5 Validation Report for Body TSL

Date: 29.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

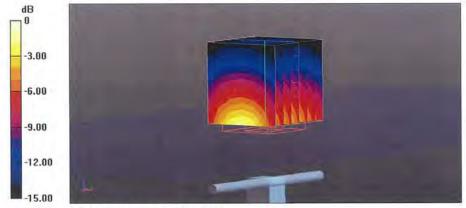
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d027

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.5 \text{ S/m}$; $\varepsilon_r = 52.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

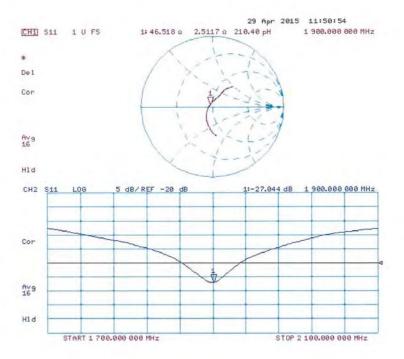

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.63 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 9.78 W/kg; SAR(10 g) = 5.2 W/kgMaximum value of SAR (measured) = 12.4 W/kg


0 dB = 12.4 W/kg = 10.93 dBW/kg

Certificate No: D1900V2-5d027 Apr15

Page: 67 of 75

Impedance Measurement Plot for Body TSL

Page: 68 of 75

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client SGS-TW (Auden)

Cartificate No: D2450V2-727 Apr15

ALIDNATION	ERTIFICATE		
Object	D2450V2 - SN: 7	27	
Calibration procedure(s)	QA CAL-05.v9 Calibration proces	dure for dipole validation kits abo	ve 700 MHz
Calibration date:	April 22, 2015		
		onal standards, which realize the physical un robability are given on the following pages an	
		y facility: environment temperature (22 ± 3)°C	
Calibration Equipment used (M&	TE critical for calibration)		
	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
rimary Standards	1	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	Scheduled Calibration Oct-15
imary Standards ower meter EPM-442A	ID#		221122122
imary Standards ower meter EPM-442A ower sensor HP 8481A	ID # GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
rimary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A	ID # GB37480704 US37292783	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	Oct-15 Oct-15
rimary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A eference 20 dB Attenuator	ID # GB37480704 US37292783 MY41092317	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16
rimary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A leference 20 dB Attenuator ype-N mismatch combination	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14)	Oct-15 Oct-15 Oct-15 Mär-16 Mar-16 Dec-15
rrimary Standards rower meter EPM-442A rower sensor HP 8481A rower sensor HP 8481A reference 20 dB Attenuator rype-N mismatch combination reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14)	Oct-15 Oct-15 Oct-15 Mär-16 Mar-16 Dec-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 PAE4 Recondary Standards	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02131) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Recondary Standards Reference Res SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ESS-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	Oct-15 Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-801_Aug14) Check Date (in house)	Oct-15 Oct-15 Oct-15 Oct-15 Mär-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02031) 01-Apr-15 (No. 217-02131) 30-Dec-14 (No. E53-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name Michael Weber	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) Function Laboratory Technician	Oct-15 Oct-15 Oct-15 Oct-15 Mär-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
Primary Standards Power meter EPM-442A Power sensor HP 9481A Power sensor HP 9481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02031) 01-Apr-15 (No. 217-02131) 30-Dec-14 (No. E53-3205_Dec14) 18-Aug-14 (No. DAE4-801_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Oct-15 Mär-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15

Certificate No: D2450V2-727_Apr15

Page 1 of 8

Page: 69 of 75

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The Impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-727_Apr15

Page 2 of 8

Page: 70 of 75

Measurement Conditions

as far as not given on page 1

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

g parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.6 ± 6 %	1.82 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.6 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.0 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-727_Apr15

Page: 71 of 75

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	56.2 Ω + 1.3 jΩ
Return Loss	- 24.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.8 Ω + 3.3 jΩ
Return Loss	- 28.6 dB

General Antenna Parameters and Design

Floatrical Dalay (and direction)	1.149 ns
Electrical Delay (one direction)	1.149 115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 09, 2003

Certificate No: D2450V2-727_Apr15

Page 4 of 8

Page: 72 of 75

DASY5 Validation Report for Head TSL

Date: 22.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type; D2450V2; Serial: D2450V2 - SN: 727

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.82$ S/m; $\varepsilon_r = 37.6$; $\rho = 1000$ kg/m³

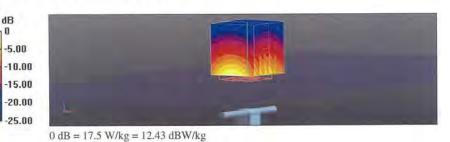
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.54, 4.54, 4.54); Calibrated: 30.12.2014;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

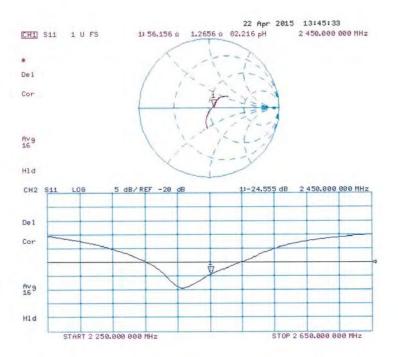

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.5 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 27.4 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.1 W/kg

Maximum value of SAR (measured) = 17.5 W/kg


Certificate No: D2450V2-727_Apr15

Page 5 of 8

Page: 73 of 75

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-727_Apr15

Page: 74 of 75

DASY5 Validation Report for Body TSL

Date: 22.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 727

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ S/m; $\varepsilon_r = 50.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2014;

· Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

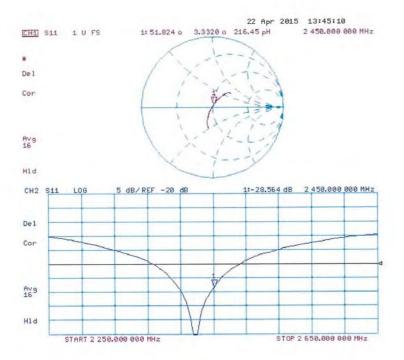
Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.54 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.2 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.1 W/kgMaximum value of SAR (measured) = 17.4 W/kg


0 dB = 17.4 W/kg = 12.41 dBW/kg

Certificate No: D2450V2-727_Apr15

Page: 75 of 75

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-727_Apr15

Page 8 of 8

- End of 1st part of report -