

Test Report

Report No.: MTi231221003-05E2

Date of issue: 2024-04-26

Applicant: WIRELESS-TAG TECHNOLOGY CO., LIMITED

Product: WiFi Module

Model(s): WT32-ETH02

FCC ID: 2AFOS-WT32-ETH02

Shenzhen Microtest Co., Ltd.

http://www.mtitest.com

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com

Table of contents

1	Gen	neral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 7 7
2	Sum	nmary of Test Result	8
3	Test	t Facilities and accreditations	9
	3.1	Test laboratory	9
4	List	of test equipment	10
5	Eval	luation Results (Evaluation)	11
	5.1	Antenna requirement	11
6	Rad	lio Spectrum Matter Test Results (RF)	12
	6.1 6.2 6.3 6.4 6.5 6.6 6.7	Conducted Emission at AC power line Occupied Bandwidth Maximum Conducted Output Power Power Spectral Density RF conducted spurious emissions and band edge measurement Band edge emissions (Radiated) Radiated emissions (below 1GHz) Radiated emissions (above 1GHz)	
Ph	otogr	raphs of the test setup	30
Ph	otogr	raphs of the EUT	31
Аp	pend	lix A: DTS Bandwidth	33
Аp	pend	lix B: Maximum conducted output power	38
Аp	pendi	lix C: Maximum power spectral density	39
Аp	pendi	lix D: Band edge measurements	44
		lix E: Conducted Spurious Emission	
-	_	lix F: Duty Cycle	

Test Result Certification Applicant: WIRELESS-TAG TECHNOLOGY CO., LIMITED 801, Block A, Building 6, Shenzhen International Innovation Valley, Dashi Address: Road, Xili Community, Xili Street, Nanshan District, Shenzhen Manufacturer: WIRELESS-TAG TECHNOLOGY CO., LIMITED 801, Block A, Building 6, Shenzhen International Innovation Valley, Dashi Address: Road, Xili Community, Xili Street, Nanshan District, Shenzhen **Product description** Product name: WiFi Module Trademark: Wireless-tag Model name: WT32-ETH02 Series Model(s): N/A Standards: 47 CFR Part 15.247 ANSI C63.10-2013 Test Method: KDB 558074 D01 15.247 Meas Guidance v05r02 **Date of Test** Date of test: 2024-02-21 to 2024-03-05 Test result: **Pass**

Test Engineer :	:	Yanice Xie
		(Yanice.Xie)
Reviewed By :	:	Dowid. Cee
		(David Lee)
Approved By :	:	leor chen
		(Leon Chen)

1 General Description

1.1 Description of the EUT

Product name:	WiFi Module
Model name:	WT32-ETH02
Series Model(s):	N/A
Model difference:	N/A
Electrical rating:	Input:DC 3.3V
Accessories:	N/A
Hardware version:	V1.0
Software version:	V1.0
Test sample(s) number:	MTi231221003-05S1001
RF specification	
Operating frequency range:	802.11b/g/n20:2412~2462 MHz 802.11n40:2422~2452 MHz
Channel number:	11
Modulation type:	IEEE 802.11b : DSSS (DBPSK, DQPSK, CCK) IEEE 802.11g/n (HT20/HT40) : OFDM (64QAM, 16QAM, QPSK, BPSK)
Antenna(s) type:	PCB Antenna
Antenna(s) gain:	2.86 dBi
4.2 Description of test	

1.2 Description of test modes

No.	Emission test modes
Mode1	TX-802.11b
Mode2	TX-802.11g
Mode3	TX-802.11N20
Mode4	TX-802.11N40

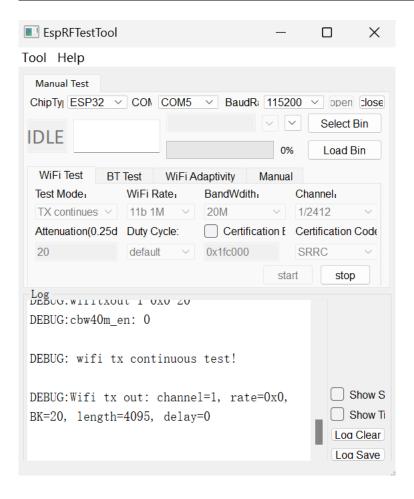
1.2.1 Operation channel list

Cha	nnel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	1	2412	5	2432	9	2452
	2	2417	6	2437	10	2457
	3	2422	7	2442	11	2462
	4	2427	8	2447	/	1

Test Channel List

Operation Band: 2400-2483.5 MHz

Bandwidth	Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)			
(MHz)	(MHz)	(MHz)	(MHz)			
20	2412	2437	2462			
40	2422	2437	2452			



Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software:

For power setting, refer to below table.

Mode	2412MHz	2437MHz	2462MHz
802.11b	58	58	75
802.11g	30	30	30
802.11n20	30	30	30
Mode	2422MHz	2437MHz	2452MHz
802.11n40	30	30	30

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

Support equipment list					
Description	Model	Serial No.	Manufacturer		
Laptop	e485	1	Lenovo		
Support cable list					
Description	Length (m)	From	То		
/	1	1	1		

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Power Spectral Density, conducted	±1 dB
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Requirement	Result
1	Antenna requirement	47 CFR 15.203	Pass
2	Conducted Emission at AC power line	47 CFR 15.207(a)	Pass
3	Occupied Bandwidth	47 CFR 15.247(a)(2)	Pass
4	Maximum Conducted Output Power	47 CFR 15.247(b)(3)	Pass
5	Power Spectral Density	47 CFR 15.247(e)	Pass
6	RF conducted spurious emissions and band edge measurement	47 CFR 15.247(d), 15.209, 15.205	Pass
7	Band edge emissions (Radiated)	47 CFR 15.247(d), 15.209, 15.205	Pass
8	Radiated emissions (below 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Radiated emissions (above 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.		
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China		
Telephone:	(86-755)88850135		
Fax:	(86-755)88850136		
CNAS Registration No.:	CNAS L5868		
FCC Registration No.:	448573		
IC Registration No.:	21760		
CABID:	CN0093		

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due	
		Conducted En	nission at AC po	wer line			
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2023-04-26	2024-04-25	
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2023-05-05	2024-05-04	
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2023-06-03	2024-06-02	
	RF cond	Maximum Co	pied Bandwidth Inducted Output Spectral Density Issions and band	<i>(</i>	ent		
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2023-04-26	2024-04-25	
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2023-04-25	2024-04-24	
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2023-04-25	2024-04-24	
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2023-04-25	2024-04-24	
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2023-04-26	2024-04-25	
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2023-04-26	2024-04-25	
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2023-05-05	2024-05-04	
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2023-04-25	2024-04-24	
9	DC Power Supply	Agilent	E3632A	MY40027695	2023-05-05	2024-05-04	
			emissions (Radi nissions (above 1				
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25	
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16	
3	Amplifier	Agilent	8449B	3008A01120	2023-06-26	2024-06-25	
4	Multi-device Controller	TuoPu	TPMDC	1	2023-05-04	2024-05-03	
5	MXA signal analyzer	Agilent	N9020A	MY54440859	2023-06-01	2024-05-31	
	Radiated emissions (below 1GHz)						
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25	
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10	
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2023-06-11	2025-06-10	
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2023-04-25	2024-04-24	
5	Multi-device Controller	TuoPu	TPMDC	1	2023-05-04	2024-05-03	

5 Evaluation Results (Evaluation)

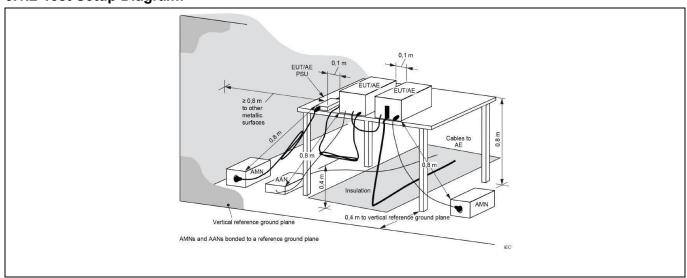
5.1 Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

5.1.1 Conclusion:

The antenna of the EUT is permanently attached.
The EUT complies with the requirement of FCC PART 15.203.

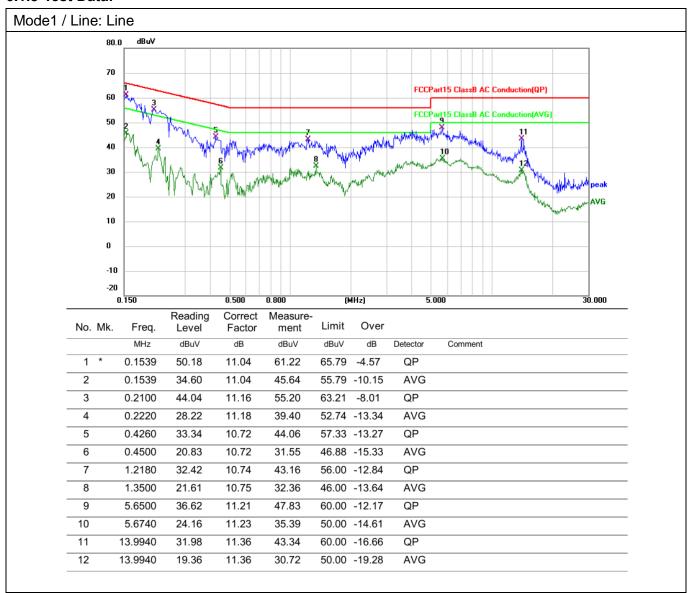
6 Radio Spectrum Matter Test Results (RF)

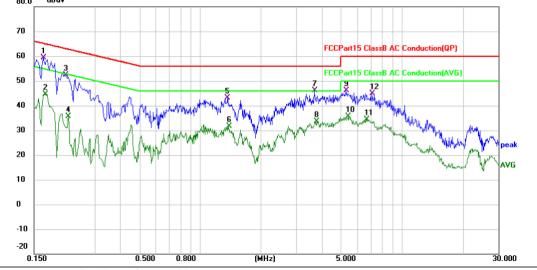

6.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).					
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)				
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of the frequency.					
Test Method:	ANSI C63.10-2013 section 6.2					
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices					

6.1.1 E.U.T. Operation:

Operating Environment:						
Temperature:	32.1 °C		Humidity:	62.6 %	Atmospheric Pressure:	100 kPa
Pre test mode:	Mode	e1, Mode2,	Mode3, Mode4			
Final test mode			re-test mode w ded in the repo	ere tested, only the data rt	of the worst mode	

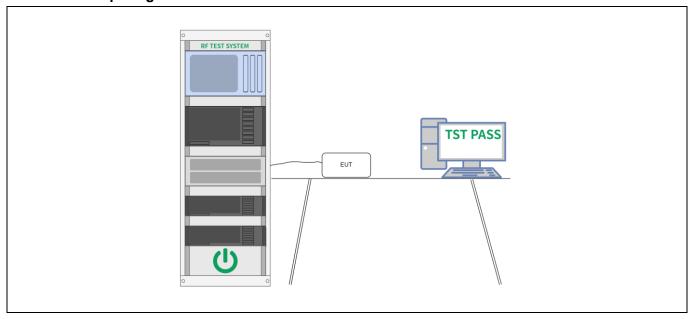

6.1.2 Test Setup Diagram:


Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com

6.1.3 Test Data:

Page 14 of 63 Report No.: MTi231221003-05E2 Mode1 / Line: Neutral dBuV 80.0

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1660	48.39	11.10	59.49	65.16	-5.67	QP	
2	0.1700	33.54	11.10	44.64	54.96	-10.32	AVG	
3	0.2140	41.19	11.18	52.37	63.05	-10.68	QP	
4	0.2220	24.54	11.20	35.74	52.74	-17.00	AVG	
5	1.3700	32.25	10.78	43.03	56.00	-12.97	QP	
6	1.3860	20.76	10.78	31.54	46.00	-14.46	AVG	
7	3.6620	35.29	10.84	46.13	56.00	-9.87	QP	
8	3.7940	22.85	10.84	33.69	46.00	-12.31	AVG	
9	5.2619	35.18	10.89	46.07	60.00	-13.93	QP	
10	5.3900	24.72	10.90	35.62	50.00	-14.38	AVG	
11	6.6700	23.42	10.97	34.39	50.00	-15.61	AVG	
12	7.0660	33.86	10.97	44.83	60.00	-15.17	QP	


6.2 Occupied Bandwidth

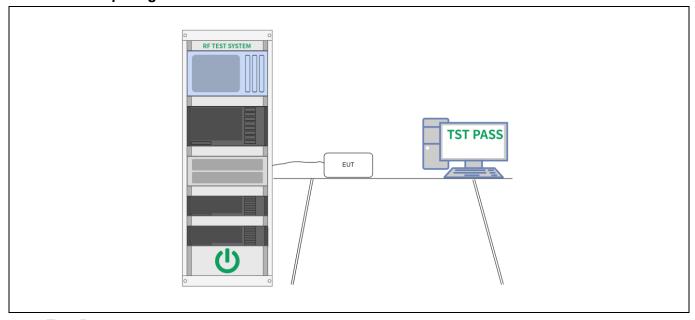
Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.2.1 E.U.T. Operation:

Operating Environment:						
Temperature: 24 °C Humidity: 54 % Atmospheric Pressure: 101 kPa				101 kPa		
Pre test mode:		Mode	e1, Mode2,	Mode3, Mode4		
Final test mode:		Mode	e1, Mode2,	Mode3, Mode4		

6.2.2 Test Setup Diagram:

6.2.3 Test Data:


6.3 Maximum Conducted Output Power

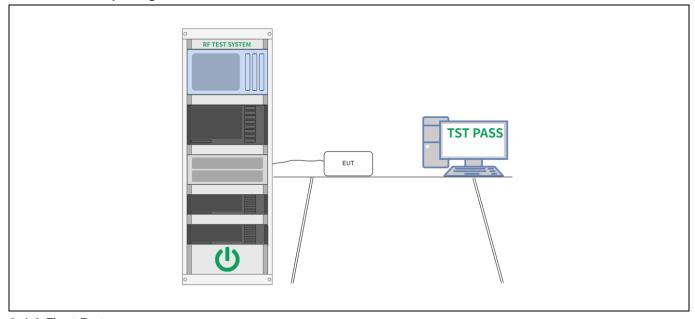
Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power

6.3.1 E.U.T. Operation:

Operating Environment:						
Temperature: 24 °C	Humidity:	54 %	Atmospheric Pressure:	101 kPa		
Pre test mode:	Mode1, Mode2,	Mode3, Mode4				
Final test mode:	Mode1, Mode2,	Mode3, Mode4				

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


6.4 Power Spectral Density

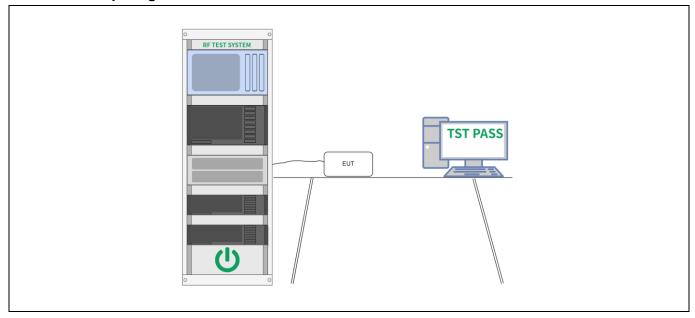
Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

6.4.1 E.U.T. Operation:

Operating Environment:							
Temperature:	Temperature: 24 °C					Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2,	Mode3,	Mode4		
Final test mode:		Mode	e1, Mode2,	Mode3,	Mode4		

6.4.2 Test Setup Diagram:

6.4.3 Test Data:


6.5 RF conducted spurious emissions and band edge measurement

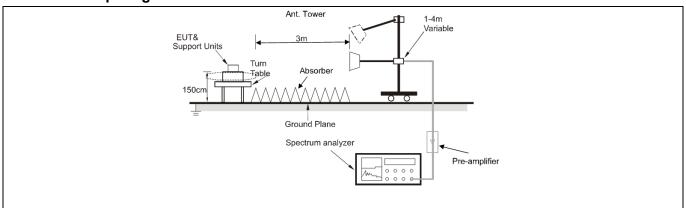
<u> </u>	
Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

6.5.1 E.U.T. Operation:

Operating Envi	ronment:	ı i					
Temperature:	24 °C		Humidity:	54 %		Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2,	Mode3,	Mode4		
Final test mode	e:	Mode	e1, Mode2,	Mode3,	Mode4		

6.5.2 Test Setup Diagram:

6.5.3 Test Data:


6.6 Band edge emissions (Radiated)

Test Requirement:	restricted bands, as de	7(d), In addition, radiated em fined in § 15.205(a), must als s specified in § 15.209(a)(see	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits she employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamental erating under this section shown that the section shows the section shown the section shows the section shows the section shows the section of the section in the above table are basi-peak detector except for above 1000 MHz. Radiated on measurements employing	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	ction 6.10 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sed	tion 6.10.5.2	

6.6.1 E.U.T. Operation:

Operating Env	ironment:					
Temperature:	25 °C		Humidity:	59 %	Atmospheric Pressure:	98 kPa
Pre test mode:	test mode: Mode1, Mode2, Mode3, Mode4					
Final test mode	e:			re-test mode w ded in the repo	rere tested, only the data ort	of the worst mode
Note: The amplitude reported.	of spurio	us em	issions whic	ch are attenuate	ed more than 20 dB belov	v the limits are not

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

Mode1 /	Polariza	atior	n: Horizonta	al / CH: L					
	No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	1	2310.000	46.47	-2.66	43.81	74.00	-30.19	peak
	2	1	2310.000	36.87	-2.66	34.21	54.00	-19.79	AVG
	3		2390.000	54.58	-2.03	52.55	74.00	-21.45	peak
	4	*	2390.000	47.10	-2.03	45.07	54.00	-8.93	AVG

No	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	44.98	-2.66	42.32	74.00	-31.68	peak
2		2310.000	35.26	-2.66	32.60	54.00	-21.40	AVG
3		2390.000	51.89	-2.03	49.86	74.00	-24.14	peak
4	*	2390.000	44.48	-2.03	42.45	54.00	-11.55	AVG

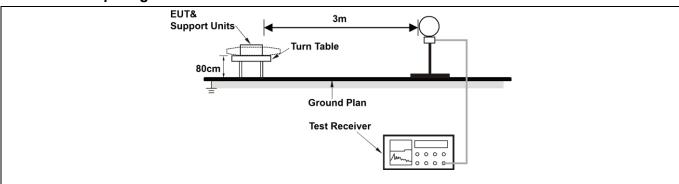
No.	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	56.37	-1.91	54.46	74.00	-19.54	peak
2	*	2483.500	49.66	-1.91	47.75	54.00	-6.25	AVG
3		2500.000	51.57	-1.80	49.77	74.00	-24.23	peak
4		2500.000	43.19	-1.80	41.39	54.00	-12.61	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	53.34	-1.91	51.43	74.00	-22.57	peak
2	*	2483.500	46.78	-1.91	44.87	54.00	-9.13	AVG
3		2500.000	50.23	-1.80	48.43	74.00	-25.57	peak
4		2500.000	41.46	-1.80	39.66	54.00	-14.34	AVG

6.7 Radiated emissions (below 1GHz)

Test Requirement:	restricted bands, as de	7(d), In addition, radiated en fined in § 15.205(a), must al s specified in § 15.209(a)(se	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation with sections of this part, e. In the emission table a The emission limits she employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamental perating under this section shows the perating under this section shows the perating under this section shows the perating under the per	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	otion 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sed	ction 6.6.4	

6.7.1 E.U.T. Operation:

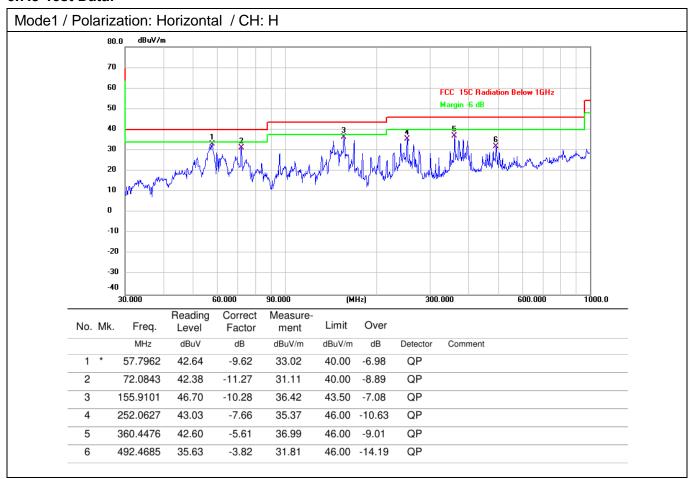

Operating Envi	ronment					
Temperature:	25 °C		Humidity:	59 %	Atmospheric Pressure:	98 kPa
Pre test mode:	st mode: Mode1, Mode2, Mode3, Mode4					
Final test mode	All of the listed pre-test mode were tested, only the data of the worst mode (Mode1) is recorded in the report					of the worst mode
Motor						

Note:

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.

6.7.2 Test Setup Diagram:



Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com

6.7.3 Test Data:

5

6

252.0627

492.4685

35.50

41.48

-7.66

-3.82

27.84

37.66

Report No.: MTi231221003-05E2 Mode1 / Polarization: Vertical / CH: H dBuV/m 80.0 70 60 FCC 15C Radia Margin -6 dB 50 40 30 20 10 0 -10 -20 -30 -40 (MHz) 600.000 30.000 60.000 90.000 300.000 1000.0 Reading Correct Measure-Over Limit No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m dBuV/m dB Detector Comment 56.5929 39.16 -9.43 29.73 40.00 -10.27 QP 2 59.8588 40.99 -9.79 31.20 40.00 -8.80 QP QP 96.0986 3 42.56 -10.55 32.01 43.50 -11.49 143.8295 43.81 -10.56 33.25 43.50 -10.25 QP 4

46.00 -18.16

-8.34

46.00

QP

QP

6.8 Radiated emissions (above 1GHz)

Test Requirement:		nissions which fall in the rest comply with the radiated em 5(c)).`	•
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits she employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamental perating under this section shows the perating under this section shows the perating under this section shows the perating under the per	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	ction 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sed	otion 6.6.4	

6.8.1 E.U.T. Operation:

Operating Enviror	nment:				
Temperature: 2	5 °C	Humidity:	59 %	Atmospheric Pressure:	98 kPa
Pre test mode: Mode1, Mode2, Mode3, Mode4					
Final test mode:		•	ore-test mode or ded in the rep	were tested, only the data ort	of the worst mode
Note: Test frequer attenuated more to				olitude of spurious emission ported.	ns which are
All modes of oper	ration of the	EUT were ir	nvestigated, ai	nd only the worst-case resu	ults are reported.

6.8.2 Test Setup Diagram:

6.8.3 Test Data:

Mode1 / F	Polari	zatio	n: Horizonta	al / CH: L					
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		4824.000	59.66	-7.42	52.24	74.00	-21.76	peak
_	2	*	4824.000	56.87	-7.42	49.45	54.00	-4.55	AVG
_	3		7236.000	46.48	0.75	47.23	74.00	-26.77	peak
_	4		7236.000	40.36	0.75	41.11	54.00	-12.89	AVG
	5		9648.000	48.11	2.34	50.45	74.00	-23.55	peak
	6		9648.000	41.92	2.34	44.26	54.00	-9.74	AVG

No	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4824.000	52.63	-7.42	45.21	74.00	-28.79	peak
2		4824.000	50.00	-7.42	42.58	54.00	-11.42	AVG
3		7236.000	46.87	0.75	47.62	74.00	-26.38	peak
4		7236.000	40.63	0.75	41.38	54.00	-12.62	AVG
5		9648.000	48.90	2.34	51.24	74.00	-22.76	peak
6	*	9648.000	42.78	2.34	45.12	54.00	-8.88	AVG

No. N	Лk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	-	4874.000	56.08	-7.44	48.64	74.00	-25.36	peak
2 *	,	4874.000	53.79	-7.44	46.35	54.00	-7.65	AVG
3		7311.000	47.49	0.70	48.19	74.00	-25.81	peak
4		7311.000	41.43	0.70	42.13	54.00	-11.87	AVG
5		9748.000	47.97	3.03	51.00	74.00	-23.00	peak
6		9748.000	41.45	3.03	44.48	54.00	-9.52	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4874.000	52.94	-7.44	45.50	74.00	-28.50	peak
2		4874.000	50.59	-7.44	43.15	54.00	-10.85	AVG
3		7311.000	47.17	0.70	47.87	74.00	-26.13	peak
4		7311.000	44.46	0.70	45.16	54.00	-8.84	AVG
5		9748.000	48.90	3.03	51.93	74.00	-22.07	peak
6	*	9748.000	42.34	3.03	45.37	54.00	-8.63	AVG

No	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4924.000	59.65	-7.37	52.28	74.00	-21.72	peak
2	*	4924.000	57.53	-7.37	50.16	54.00	-3.84	AVG
3		7386.000	46.14	1.06	47.20	74.00	-26.80	peak
4		7386.000	40.05	1.06	41.11	54.00	-12.89	AVG
5		9848.000	48.72	2.75	51.47	74.00	-22.53	peak
6		9848.000	42.50	2.75	45.25	54.00	-8.75	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4924.000	52.75	-7.37	45.38	74.00	-28.62	peak
2		4924.000	50.63	-7.37	43.26	54.00	-10.74	AVG
3		7386.000	47.71	1.06	48.77	74.00	-25.23	peak
4		7386.000	41.20	1.06	42.26	54.00	-11.74	AVG
5		9848.000	48.67	2.75	51.42	74.00	-22.58	peak
6	*	9848.000	42.41	2.75	45.16	54.00	-8.84	AVG

Photographs of the test setup

Refer to Appendix - Test setup Photos

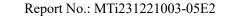
Photographs of the EUT

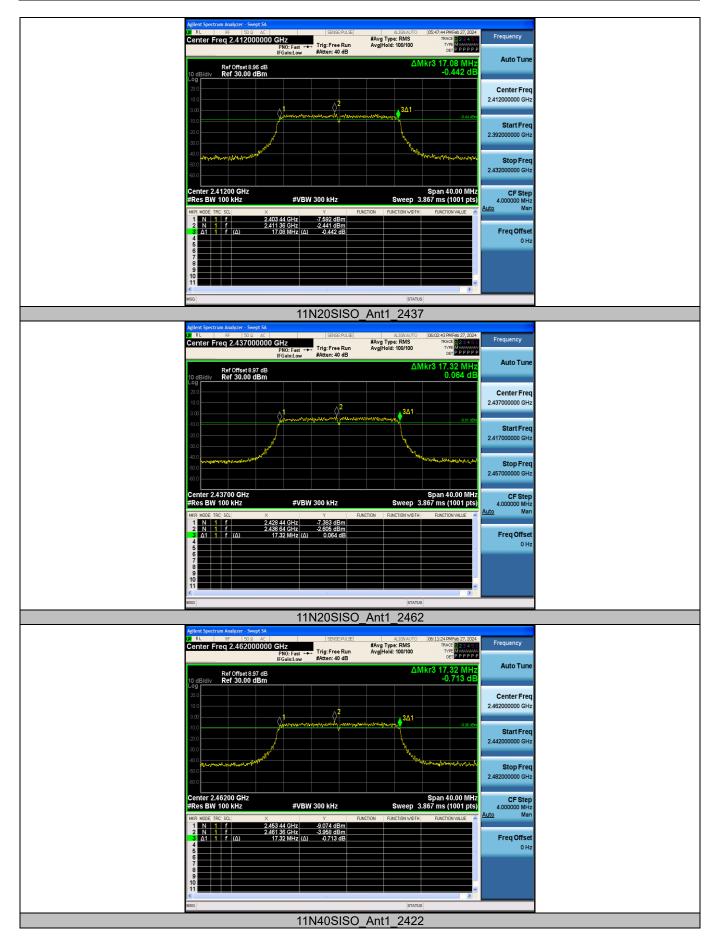
Refer to Appendix - EUT Photos

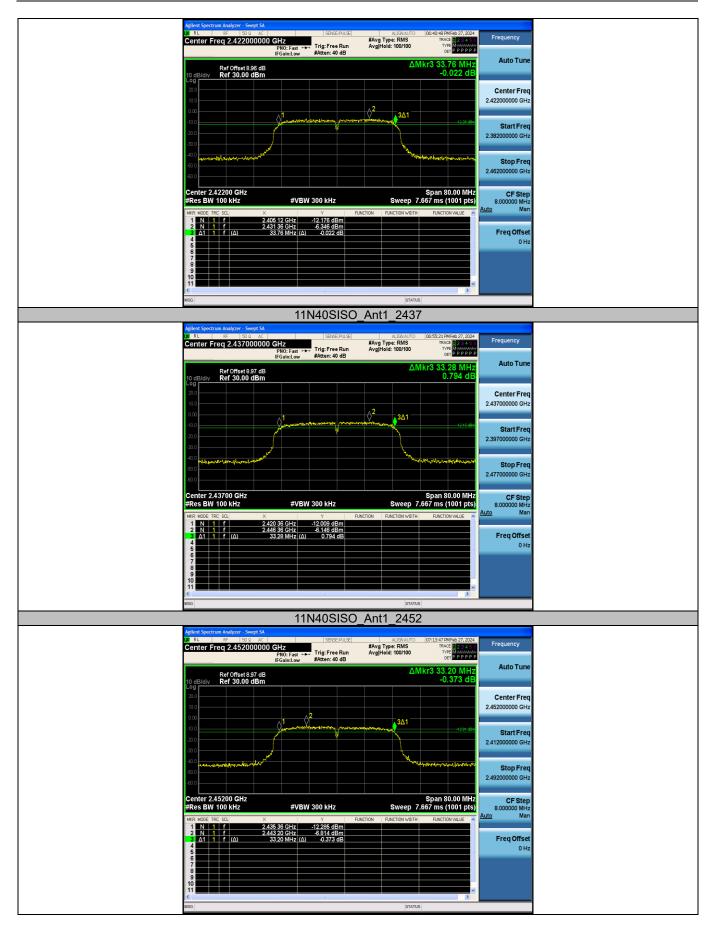
Appendix

Appendix A: DTS Bandwidth

Test Result


Test Mode	Antenna	Frequency [MHz]	DTS BW [MHz]	Limit [MHz]	Verdict
		2412	9.080	0.5	PASS
11B	Ant1	2437	9.560	0.5	PASS
		2462	9.120	0.5	PASS
		2412	16.440	0.5	PASS
11G	Ant1	2437	16.400	0.5	PASS
		2462	16.400	0.5	PASS
		2412	17.080	0.5	PASS
11N20SISO	Ant1	2437	17.320	0.5	PASS
		2462	17.320	0.5	PASS
		2422	33.760	0.5	PASS
11N40SISO	Ant1	2437	33.280	0.5	PASS
		2452	33.200	0.5	PASS

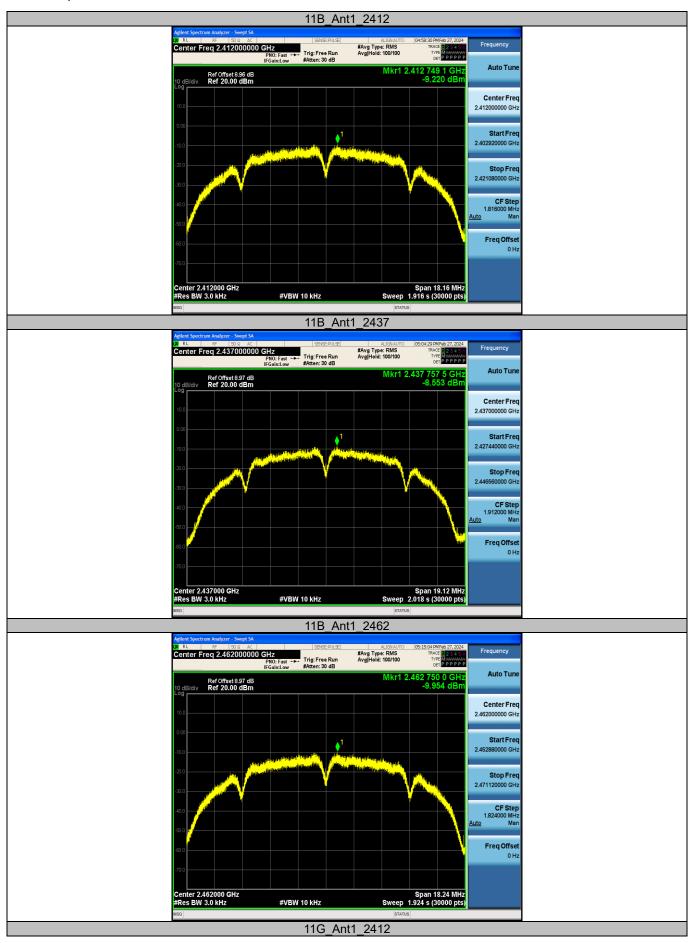

Test Graphs



Appendix B: Maximum conducted output power

Test Result Peak

Test Mode	Antenna	Frequency [MHz]	Peak Power [dBm]	Conducted Limit [dBm]	Verdict
11B		2412	17.60	≤30.00	PASS
	Ant1	2437	18.24	≤30.00	PASS
		2462	16.74	≤30.00	PASS
11G	Ant1	2412	17.16	≤30.00	PASS
		2437	17.92	≤30.00	PASS
		2462	15.80	≤30.00	PASS
	Ant1	2412	17.26	≤30.00	PASS
11N20SISO		2437	17.76	≤30.00	PASS
		2462	15.88	≤30.00	PASS
		2422	17.07	≤30.00	PASS
11N40SISO	Ant1	2437	17.19	≤30.00	PASS
		2452	16.28	≤30.00	PASS


Appendix C: Maximum power spectral density

Test Result

Test Mode	Antenna	Frequency [MHz]	Result [dBm/3-100kHz]	Limit [dBm/3kHz]	Verdict
		2412	-9.22	≤8.00	PASS
11B	Ant1	2437	-8.55	≤8.00	PASS
		2462	-9.95	≤8.00	PASS
11G		2412	-17.48	≤8.00	PASS
	Ant1	2437	-16.65	≤8.00	PASS
		2462	-17.95	≤8.00	PASS
	Ant1	2412	-17.36	≤8.00	PASS
11N20SISO		2437	-16.80	≤8.00	PASS
		2462	-17.52	≤8.00	PASS
		2422	-17.77	≤8.00	PASS
11N40SISO	Ant1	2437	-16.75	≤8.00	PASS
		2452	-16.51	≤8.00	PASS

Page 40 of 63 Report No.: MTi231221003-05E2

Test Graphs

