Shenzhen Hetuo Technology Co., Ltd

Sample Approved Sheet

Hetuo (R1310A) Acknowledgment

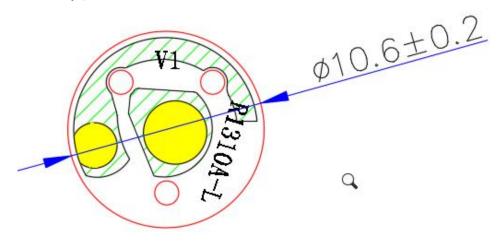
Customer Name Dongguan Ruihe Electronic Technology Co., Ltd

Client Type	 R1310A

Brand

HT-R1310A-L-V1

Hetuo Judgment Audit Team


Formulate	Check	Ratify	Acknowledge the book completion time
Liyaona	Huxuewen	Daitingting	2024.01.08

(Client) Judgment Audit Team

Acknowledgement	Number	1	e	
acknowledge	check	ratify		ledge the book pletion time
Project Review □ □examining re]Three acknowled port □Specimer			ngs □HSF
Appraisal report	Accept	□Conditional acc	ceptance	Refuse

1. Antenna picture

The report mainly provides the test status of the electrical properties parameters of R1310A. The R1310Aantenna is a 2.4-2.5GHz Band . The antenna Picture and assembly are shown below. Antenna picture & assembly picture

2.Antenna Test Equipment Introduction

Test of antenna input characteristics using Agilent E5071C and Agilent 5062A vector network analyzer; The radiation pattern of the antenna are tested using the Satimo starlab 3D near field Anechoic Chamber , and the instrument is used to agilent8960 E5515 and Agilent E4438C. The test coordinates of the darkroom are as follows:

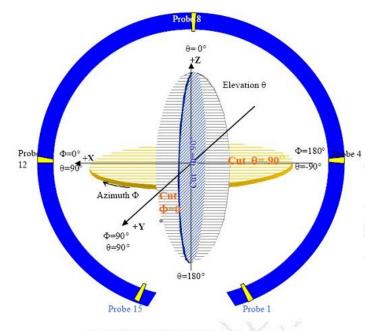
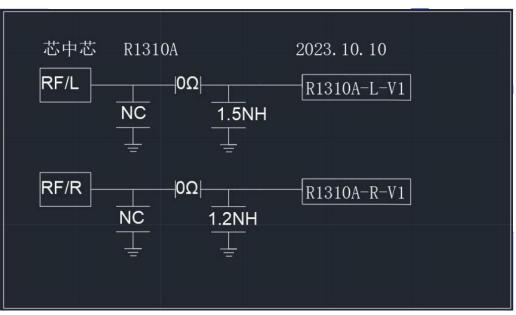
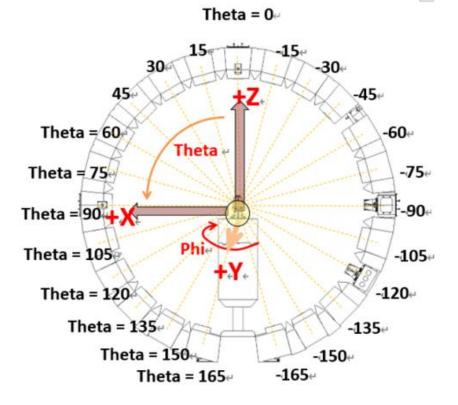
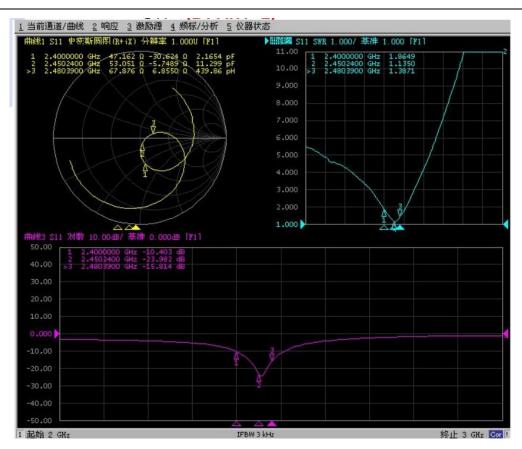



图 4 3D 微波暗室测试坐标系(back view)

3. Electrical Specification


3-2 Passive S11 parameter

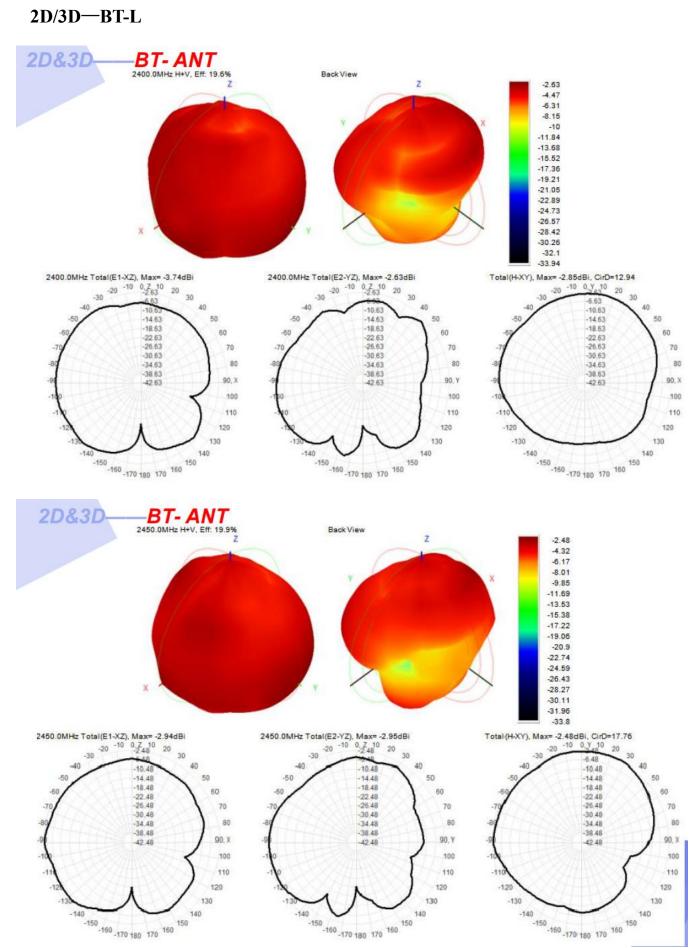
Measuring Method is a 50Ω coaxial cable is connected to the antenna. Then this cable is connected to a network analyzer to measure the S11 parameter, Keeping this fixture away from metal at least 20cm.


VSWR—L

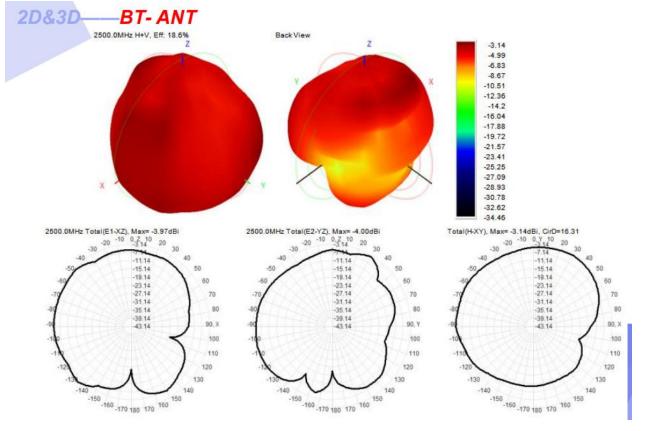
Sample status & coordinates

S11-L(BT ANT)

Confidential Information



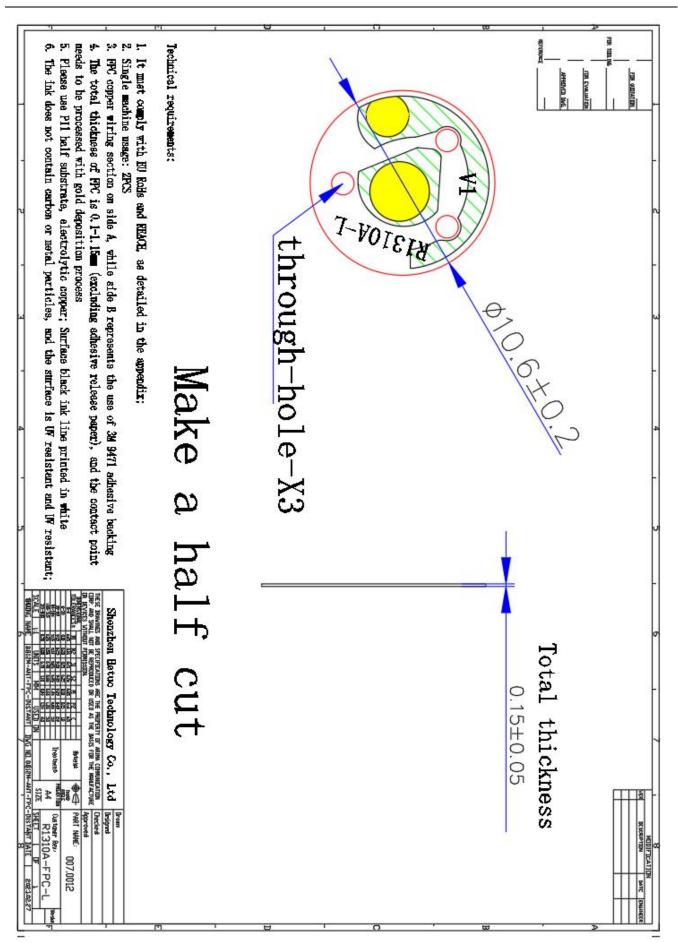
3-3 Antenna Matching Network


Gain & Efficiency—BT-ANT-L

6											
Frequency ID	1	深圳市	市合拓	科技有	5限公	司 6	7	8	9	10	11
Frequency (MHz)	2400.0	2410.0	2420.0	2430.0	-		2460.0	-	-	-	
Efficiency (dBi)	-7.07	-6.92	-6.95	-6.78	-6.93	-7.02	-				-7.31
Gain (dBi)	-2.63	-2.51	-2.52	-2.26	-2.47	-2.48	-2.65	-2.29	-2.32	-2.36	
Efficiency (%)	19.61	20.32	20.19	20.97	20.29	19.87	19.87 19.69		19.64	19.03	18.59
Directivity (dB)	4.45	4.41	4.43	4.53	4.46	4.54 4.41		4.72	4.74	4.85	4.16
Peak Gain Position (Theta)	105.00	105.00	90.00	90.00	105.00	90.00	90.00 75.00		90.00	90.00	90.00
Peak Gain Position (Phi)	90.00	90.00	105.00	120.00	105.00	120.00	105.00	120.00	120.00	120.00	120.00
Efficiency ThetaPol (%)	10.42	10.95	10.88	11.29	10.98	10.88	10.88 10.86		11.64	11.22	11.11
Efficiency PhiPol (%)	9.20	9.37	9.31	9.68	9.32	8.99	8.99 8.84		8.00	7.81	7.49
Upper Hem. Efficiency (%)	11.10	11.33	11.37	11.90	11.65	11.40	11.57	11.69	11.60	11.19	10.78
Lower Hem. Efficiency (%)	8.51	8.99	8.82	9.08	8.65	8.47	8.13	8.25	8.04	7.84	7.81
Gain (dBi)	-2.63	-2.51	-2.52	-2.26	-2.47	-2.48	-2.65	-2.29	-2.32	-2.36	-3.14
Efficiency (%)	19.61	20.32	20.19	20.97	20.29	19.87	19.69	19.93	19.64	19.03	18.59

Confidential Information

Confidential Information



OTA DATA(L)--FS

>(dBm (dBm		1.57													
el	Freq. (MHz)	TRP (dBm)	TIS (dBm)	Gain (dBi)	Directivit y (dBi)	Efficienc y (%)	Efficienc y (dB)	Max (dBm)	Theta of Max	Phi of Max	Min (dBm)	Theta of Min	Phi of Min	AVG (dBm)	Max/Min (dB)
	-	0.98			-	-	-	5.57	0	0	-8.11	0	0	1.30	13.68
	-	1.33	-	-	-	-	-	5.45	0	1	-10.38	0	1	1.39	15.83
	-	2.29	-	-	-	-	-	6.09	0	2	-8.96	0	2	2.25	15.05
	-	-	-	-	-	-	-	-	-		-	-	-	-	-
		-	-	-	-	-	-			-					-
	-	-	-88.99	-	-	-	-	-79.90	0	0	-93.58	0	0	-86.33	13.68
	-	-	-87.87	-	-	-	-	-76.16	0	1	-91.99	0	1	-83.58	15.83
	-	-	-87.88	-	-	-	-	-76.63	0	2	-91.68	0	2	-84.15	15.05
	-	-	-	-	-	-		-	-	-	-	-	-	-	-
	-	-	-	-	_	-		-	-	-	-	-		-	-

OTA DATA(L)--BH

dBm (Bm)	5. Y	0.63													
1	Freq. (MHz)	TRP (dBm)	TIS (dBm)	Gain (dBi)	Directivit y (dBi)	Efficienc y (%)	Efficienc y (dB)	Max (dBm)	Theta of Max	Phi of Max	Min (dBm)	Theta of Min	Phi of Min	AVG (dBm)	Max/Min (dB)
	-	0.65	-	-	-	-	-	9.30	0	0	-10.32	0	0	1.17	19.61
	-	0.40	-	-	-	-	-	9.28	0	1	-13.72	0	1	1.01	22.99
	-	0.82	-	-	-	-	-	9.32	0	2	-11.57	0	2	1.40	20.89
		-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-		-						-		-
	-	-	-89.05	-	-	-	-	-78.08	0	0	-97.70	0	0	-85.88	19.61
	-	-	-88.32	-	-		-	-74.20	0	1	-97.20	0	1	-84.76	22.99
	-	-	-86.55	-	-	-	-	-74.16	0	2	-95.05	0	2	-83.35	20.89
	-	-	-	-	-	-	-	-	-		-		-	-	-
	-		-			-							-		

