

FCC Test Report

Report No: FCS202403240W02

Issued for

Applicant:	ShenZhen Alacrity Barcode Technology Co.,Ltd					
Address:	5F,Building B,Southern Pearl Technology Park, No.83,Yingtai Road,Dalang,Longhua,Shenzhen					
Product Name:	.4G/Bluetooth Wireless Barcode Scanner					
Brand Name:	N/A					
Model Name:	MJ-1930					
Series Model:	MJ-1901,MJ-1902, MJ-1903, MJ-1904, MJ-1911, MJ-2020,MJ-Q10,MJ-Q20, MJ-Q30					
FCC ID:	2A4TH-MJ-1930					
Issued By: Flux Compliance Service Laboratory						
	hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech					
	Industrial, Song shan lake Dongguan					
Tel: 769-27280901 Fax:	769-27280901 http://www.FCS-lab.com					

TEST RESULT CERTIFICATION

Applicant's Name:	ShenZhen Alacrity Barcode Technology Co.,Ltd
Address	5F,Building B,Southern Pearl Technology Park, No.83,Yingtai Road,Dalang,Longhua,Shenzhen
Manufacture's Name:	ShenZhen Alacrity Barcode Technology Co.,Ltd
Address:	5F,Building B,Southern Pearl Technology Park, No.83,Yingtai Road,Dalang,Longhua,Shenzhen
Product Description	
Product Name:	2.4G/Bluetooth Wireless Barcode Scanner
Brand Name	N/A
Model Name:	MJ-1930
Series Model	MJ-1901,MJ-1902, MJ-1903, MJ-1904, MJ-1911, MJ-2020,MJ-Q10,MJ-Q20, MJ-Q30
Test Standards	FCC Rules and Regulations Part 15 Subpart C, Section 247
Test Procedure:	ANSI C63.10:2013

This device described above has been tested by Flux Compliance Service Laboratory, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Flux Compliance Service Laboratory, this document may be altered or revised by Flux Compliance Service Laboratory, personal only, and shall be noted in the revision of the document..

Date of Test

Date (s) of performance of tests.:	Mar 14, 2024 ~ Mar 20, 2024
Date of Issue	Mar 25, 2024
Test Result:	Pass

Scott shen Tested by : (Scott Shen) Dukellan Reviewed by (Duke Qian)

Approved by

(Jack Wang)

Flux Compliance Service Laboratory

:

Table of Contents

Page

1. SUMMARY OF TEST RESULTS	
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	
2.4 EQUIPMENTS LIST	12
3. CONDUCTED EMISSION MEASUREMENT	13
4. 6DB BANDWIDTH	17
4.1 Limit	17
4.2 Test Procedure	
4.3 Test setup	17
4.4 Test results	
4.5 Original Test Data	18
5. CONDUCTED OUTPUT POWER	21
5.1 LIMIT	
5.2 TEST PROCEDURE	21
5.3 TEST SETUP	
5.5 TEST RESULTS	21
6. BAND EDGE AND SPURIOUS(CONDUCTED)	
6.1 LIMIT	
6.2 TEST PROCEDURE	22
6.3 TEST SETUP	22
6.4 TEST RESULTS	23
6.5 Original test data	23
7. POWER SPECTRAL DENSITY	27
7.1 LIMIT	
7.2 TEST PROCEDURE	
7.3 TEST SETUP	
7.4 TEST RESULTS	27

Table of Contents

Page

7.5 original test data	
8. RADIATED EMISSION MEASUREMENT	30
8.1 RADIATED EMISSION LIMITS	30
8.2 TEST PROCEDURE	31
8.3 TESTSETUP	32
8.4. TEST RESULTS	33
9. RADIATED EMISSION (30MHZ-1000MHZ)	34
■ 9.1 RADIATED EMISSION ABOVE 1GHZ	
9.2 RADIATED BAND EDGE DATA	
10. ANTENNA REQUIREMENT	40
10.1 STANDARD REQUIREMENT	40
10.2 RESULT	40

Revision History

Rev.	Issue Date	Effect Page	Contents
00	Mar 24, 2024	N/A	N/A

 Flux Compliance Service Laboratory

 Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan

 Tel: 769-27280901
 Fax: 769-27280901

 http://www.FCS-lab.com

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02

FCC Part 15.247,Subpart C							
Standard Section	Judgment	Remark					
15.207	Conducted Emission	PASS					
15.247 (b)(3)	Output Power	PASS					
15.209	Radiated Spurious Emission	PASS					
15.247(d)	Conducted Spurious & Band Edge Emission	PASS					
15.247 (e)	Power Spectral Density	PASS					
15.247(a)(2)	6dB Bandwidth 99% Bandwidth	PASS					
15.205	Restricted bands of operation	PASS					
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS					
15.203	Antenna Requirement	PASS					

NOTE:

- (1)" N/A" denotes test is not applicable in this Test Report
- (2) All tests are according to ANSI C63.10-2013

1.1 TEST FACTORY

Company Name:	Flux Compliance Service Laboratory		
Address:	Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan		
Telephone:	+86-769-27280901		
Fax:	+86-769-27280901		
FCC Test Firm Regist Designation number: (A2LA accreditation nu ISED Number: 25807 CAB ID : CN0097	mber: 5545.01		

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.71dB
2	Unwanted Emissions, conducted	±2.988 dB
3	Conducted Emission (9KHz-150KHz)	\pm 4.13 dB
4	All emissions radiated (9KHz -30MHz)	±3.1 dB
5	Conducted Emission (150KHz-30MHz)	\pm 4.74 dB
6	All emissions,radiated(<1G) 30MHz-1000MHz	\pm 5.2 dB
7	All emissions, radiated 1GHz -18GHz	±4.66 dB
8	All emissions, radiated 18GHz -40GHz	±4.31 dB
9	Occupied bandwidth	±0.3 dB
10	Power Spectral Density	±0.48 dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	2.4G/Bluetooth Wireless Barcode Scanner				
Trade Name	N/A				
Model Name	MJ-1930				
Series Model	MJ-1901,MJ-1902, MJ-19 MJ-Q10,MJ-Q20, MJ-Q30	903, MJ-1904, MJ-1911, N 0	J-2020,		
Model Difference	We (ShenZhen Alacrity Barcode Technology Co.,Ltd) Technology Co .,Ltd) hereby state that all the models are electrical identical including the same software parameter and hardware design (i.e., circuit design, PCB Layout, RF module/circuit, antenna type(s) and antenna location, components on PCB, etc.,), same mechanical structure and design (including product enclosure, materials, etc.,), the only difference is the model name and appearance color.				
	Operation Frequency:	2402-2480 MHz			
	Modulation Type:	GFSK			
	Radio Technology:	BLE			
Product Description	Bluetooth Configuration:	LE			
	Number Of Channel:	40 CH			
	Antenna Gain (dBi)	0.54			
	Transmitter rate:	1MHz			
Channel List	Please refer to the Note 2	2.			
Power Supply	Input:DC 5V 1A				
Battery	DC 3.7V 1800mAH 6.66Wh				
Hardware version number	V1.0				
Software version number	V1.0				
Connecting I/O Port(s)	Please refer to the User's Manual				

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2. Channel List

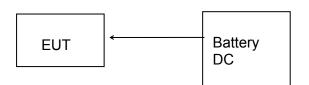
Channel	Freq.(MHz)	Channel	Freq.(MHz)	Channel	Freq.(MHz)	Channel	Freq.(MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	NA	N/A	spring Antenna	N/A	0.54	Antenna



2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED


During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Block diagram of EUT configuration for test

Mode 1

Mode 2

Test software: BT_Tool V1.1.0.exe

The test softeware was used to control EUT work in continuous TX mode, and select test channel, Wireless mode as below table

No.	Test model descrption
1	Low channel GFSK
2	Middle channel GFSK
3	High channel GFSK

Note:

- 1. All the test modes can be supply by battery, only the result of the worst case recorded in the report. GFSK mode is worst mode.
- 2. For radiated emission, 3 axis were chosen for testing for each applicable mode.
- 3. The EUT used fully charge battery when tested.
- 4. During the test, the dutycycle>98%, the test voltage was tuned from 85% to 115% of the

Nominal rate supply votage, and found that the worst case was the nominal rated supply condition, So

the report just shows that condition's data

2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
1	Adapter	Xiao	AD652G	N/A	Test use
2	notebook	Lenovo	E495	N/A	Test use

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.4 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESRP 3	FCS-E001	2023.08.29	2024.08.28
Signal Analyzer	R&S	FSV40-N	FCS-E012	2023.08.29	2024.08.28
Active loop Antenna	ZHINAN	ZN30900C	FCS-E013	2023.08.29	2024.08.28
Bilog Antenna	SCHWARZBECK	VULB 9168	FCS-E002	2023.08.29	2024.08.28
Horn Antenna	SCHWARZBECK	BBHA 9120D	FCS-E003	2023.08.29	2024.08.28
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	FCS-E018	2023.08.29	2024.08.28
Pre-Amplifier(0.1M-3G Hz)	EMCI	EM330N	FCS-E004	2023.08.29	2024.08.28
Pre-Amplifier (1G-18GHz)	N/A	TSAMP-0518SE	FCS-E014	2023.08.29	2024.08.28
Pre-Amplifier (18G-40GHz)	TERA-MW	TRLA-0400	FCS-E019	2023.08.29	2024.08.28
Temperature & Humidity	HTC-1	victor	FCS-E005	2023.08.29	2024.08.28
Testing Software	EZ-EMC(Ver.STSLAB 03A1 RE)				

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESPI	FCS-E020	2023.08.29	2024.08.28
LISN	SN R&S		FCS-E007	2023.08.29	2024.08.28
LISN	ETS	3810/2NM	FCS-E009	2023.08.29	2024.08.28
Temperature & Humidity	HTC-1	victor	FCS-E008	2023.08.29	2024.08.28
Testing Software	EZ-EMC(Ver.EMC-CON 3A1.1)				

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
MXA SIGNAL Analyzer	Keysight	N9020A	FCS-E015	2023.08.29	2024.08.28
Spectrum Analyzer	Agilent	E4447A	MY50180039	2023.08.29	2024.08.28
Spectrum Analyzer	R&S	FSV-40	101499	2023.08.29	2024.08.28
Power Sensor	Agilent	UX2021XA	FCS-E021	2023.08.29	2024.08.28
Testing Software	EZ-EMC(Ver.STSLAB 03A1 RE)				

3. CONDUCTED EMISSION MEASUREMENT

3.1 LIMIT

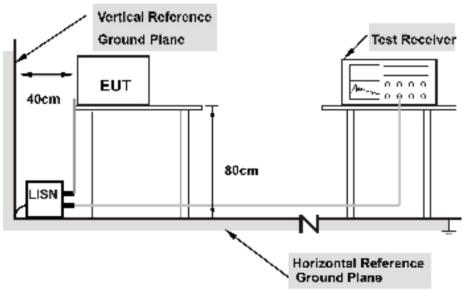
Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

		Conducted Emissionlimit (dBuV)		
	FREQUENCY (MHz)	Quasi-peak	Average	
	0.15 -0.5	66 - 56 *	56 - 46 *	
	0.50 -5.0	56.00	46.00	
Ī	5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

3.2 TEST PROCEDURE


The following table is the setting of the receiver

Receiver Parameters	Setting		
Attenuation	10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 kHz		

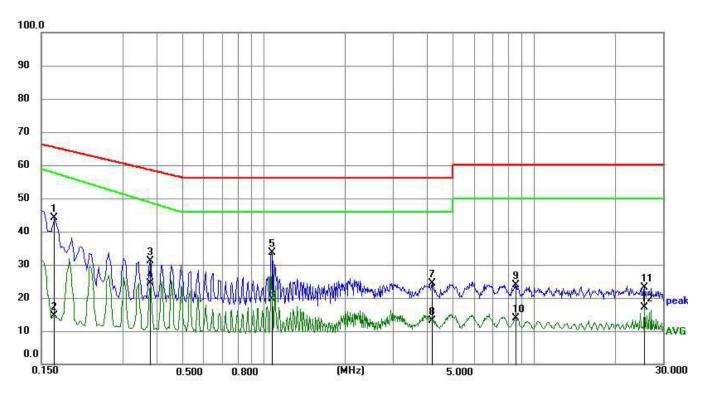
- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.3 TEST SETUP

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

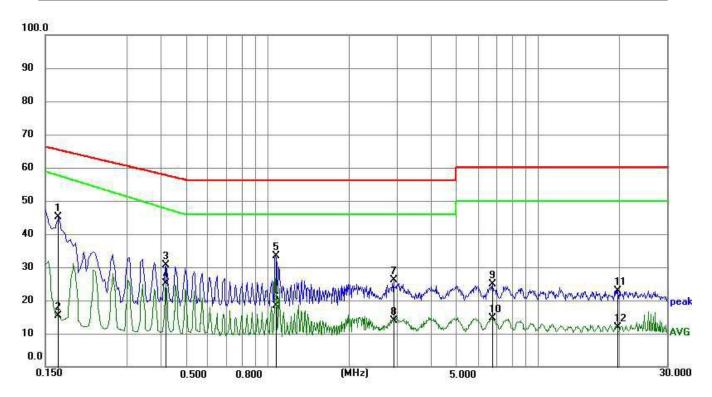
 Flux Compliance Service Laboratory

 Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan


 Tel: 769-27280901
 Fax: 769-27280901

 http://www.FCS-lab.com

3.4 TEST RESULTS


Temperature:	25℃	Relative Humidity:	50%
Test Mode:	GFSK	Test Voltage:	DC 5V
Result:	L	Result:	Pass

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1680	33.95	10.12	44.07	65.06	20.99	QP
2	0.1680	4.57	10.12	14.69	57.78	43.09	AVG
3	0.3795	21.19	10.02	31.21	58.29	27.08	QP
4	0.3795	14.37	10.02	24.39	48.98	24.59	AVG
5	1.0680	23.53	10.00	33.53	56.00	22.47	QP
6	1.0680	9.60	10.00	19.60	46.00	26.40	AVG
7	4.1820	14.51	9.90	24.41	56.00	31.59	QP
8	4.1820	3.34	9.90	13.24	46.00	32.76	AVG
9	8.5110	14.12	9.81	23.93	60.00	36.07	QP
10	8.5110	4.04	9.81	13.85	50.00	36.15	AVG
11	25.6965	13.31	9.91	23.22	60.00	36.78	QP
12	25.6965	7.10	9.91	17.01	50.00	32.99	AVG

Temperature:	25℃	Relative Humidity:	50%
Test Mode:	GFSK	Test Voltage:	DC 5V
Result:	N	Result:	Pass

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1680	35.13	10.07	45.20	65.06	19.86	QP
2	0.1680	5.29	10.07	15.36	57.78	42.42	AVG
3	0.4200	20.70	10.00	30.70	57.45	26.75	QP
4	0.4200	15.24	10.00	25.24	47.88	22.64	AVG
5	1.0680	23.38	9.99	33.37	56.00	22.63	QP
6	1.0680	8.51	9.99	18.50	46.00	27.50	AVG
7	2.9219	16.26	9.94	26.20	56.00	29.80	QP
8	2.9219	3.85	9.94	13.79	46.00	32.21	AVG
9	6.7740	14.98	9.84	24.82	60.00	35.18	QP
10	6.7740	4.72	9.84	14.56	50.00	35.44	AVG
11	19.5765	12.96	9.98	22.94	60.00	37.06	QP
12	19.5765	1.78	9.98	11.76	50.00	38.24	AVG

Remark:

1. All readings are Quasi-Peak and Average values

 Flux Compliance Service Laboratory

 Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan

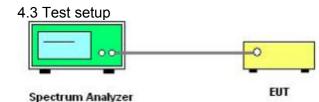
 Tel: 769-27280901
 Fax:769-27280901

 http://www.FCS-lab.com

4. 6DB BANDWIDTH

4.1 Limit

FCC Part 15.247,Subpart C						
RSS-Gen Clause 6.7						
Section Test Item Limit Frequency Range (MHz) Result						
15.247(a)(2)	7(a)(2) 6dB Bandwidth >= 500KHz		2400-2483.5	PASS		
RSS-Gen Clause 6.7	99%For reportingBandwidthpurposes only.		2400-2483.5	PASS		


4.2 Test Procedure

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

(2) Set the spectrum analyzer as follows

RBW:	100kHz
VBW:	300kHz
Detector Mode:	AVG
Sweep time:	auto
Trace mode	Max hold

(3) Allow the trace to stabilize, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.4 Test results

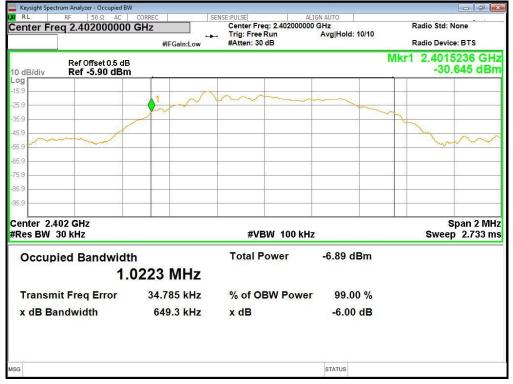
TestMode	Channel (MHz)	6dB Bandwidth (MHz)	99% Bandwidth(MHz)	Limit [MHz]	Verdict
Lowest	2402MHz	0.732	1.022	0.5	Pass
Middle	2440MHz	0.722	1.023	0.5	Pass
Highest	2480MHz	0.708	1.024	0.5	Pass

 Flux Compliance Service Laboratory

 Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan

 Tel: 769-27280901
 Fax:769-27280901

 http://www.FCS-lab.com

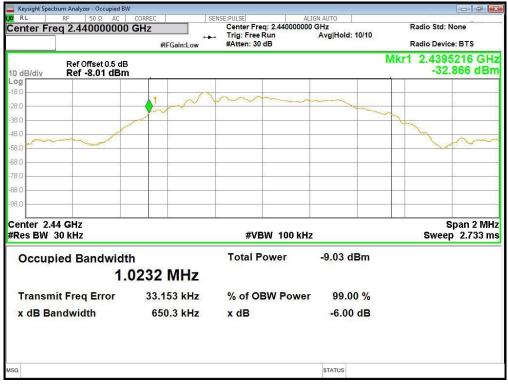


4.5 Original Test Data

trum Analyzer - Swept SA Keysi RI Center Freq 2.402000000 GHz Avg Type: Log-Pwr PNO: Wide IFGain:Low Trig: Free Run #Atten: 30 dB DET P P P P \mathbf{P} Mkr3 2.401 764 GHz -13.45 dBm Ref Offset 0.5 dB Ref -3.45 dBm 10 dB/div $()^1$ -19.45 dE Center 2.402000 GHz Span 2.000 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) FUNCTION FUNCTION WIDTH FUNCTION VALUE MKR MODE TRC SCL X 2.401 662 GHz 2.402 394 GHz 2.401 764 GHz -19.76 dBm -19.80 dBm -13.45 dBm NNN f 2 4 5 6 7 8 9 10 STATUS

6BW,1M_PHY,Lowest

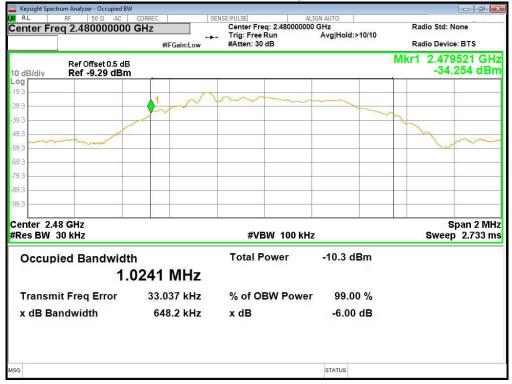
OCB,1M_PHY,Lowest



6BW,1M_PHY,Middle

Keysight Spectrum Analyzer - Swept SA					
LX RL RF 50Ω AC		SENSE:PULSE		ALIGN AUTO	70105
Center Freq 2.4400000	00 GHz PNO: W IFGain:L	de 😱 Trig: Fre ow #Atten:		Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE M WWWW DET P P P P P
Ref Offset 0.5 dB 10 dB/div Ref -5.57 dBm				Mk	r3 2.439 762 GHz -15.57 dBm
Log		1	T	0 2	
-15.6	2				-21.57 dBm
-25.6		12	-		1. A
-35.6					The second secon
-45.6 manager			-		mon
-55.6	0		-		
-65.6					
-75.6			-		
-85.6					
-95.6	8	105			· · · · · · · · · · · · · · · · · · ·
Center 2.440000 GHz #Res BW 100 kHz		#VBW 300 kH	lz	Sweep	Span 2.000 MHz 1.000 ms (1001 pts)
	x		JNCTION F	UNCTION WIDTH FU	NCTION VALUE
2 N 1 f 2 3 N 1 f 2	.439 662 GHz .440 384 GHz .439 762 GHz	-21.81 dBm -21.81 dBm -15.57 dBm			
4 5 6 7 8 9					E
10 11					
•		m		1	•
MSG				STATUS	

OCB,1M_PHY,Middle



Page 20 of 39

6BW,1M_PHY,Highest

Center Freq 2.48000000 GHz Pro: Wde IFGainLow Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr Trace I 2 3 Trig: Free Run #Atten: 30 dB Ref Offset 0.5 dB 0 dBdviv Ref -6.86 dBm -16.86 dE -16.86 dE 169 - <th>Keysight Spectrum Analyzer - Swept SA</th> <th></th> <th></th> <th></th> <th></th>	Keysight Spectrum Analyzer - Swept SA				
Ref Offset 0.5 dB Mkr3 2.479 762 GI 100 Efferint ow #Atten: 30 dB 100 ERf 0.6 s6 dBm -16.86 dE 100 Efferint ow Efferint ow 11 1 1			LSE		
Note:	Center Freq 2.480000000 GF	PNO: Wide 😱 Tri		Avg Type: Log-Pwr	TRACE 1 2 3 4 5 0 TYPE M WWWW DET P P P P P
Log 169 369 369 369 369 369 369 369 3	10 dB/div Ref -6.86 dBm			Mkr	3 2.479 762 GHz -16.86 dBm
28.9	Log			A2	
46.9 46.9	-26.9				-22.86 dBm
66.9 66.9 66.9 66.9 76.9 66.9 66.9 66.9 76.9 66.9 66.9 66.9 86.9 67.9 67.9 67.9 9.9 67.9 67.9 67.9 67.9 9.9 67.9 67.9 67.9 67.9 1 N 1 f 2.479 670 GHz -23.11 dBm 2 N 1 f 2.479 670 GHz -23.09 dBm 3 N 1 f 2.479 670 GHz -23.09 dBm 3 N 1 f 2.479 670 GHz -23.09 dBm 3 N 1 f 2.479 670 GHz -23.09 dBm 3 N 1 f 2.479 670 GHz -16.86 dBm 4 6 6 6 6 6 6 6 6 6 6 6 7 7 7 6 6 6 10 10 10 10 10 10 10 10 10 <td>-36.9</td> <td></td> <td></td> <td></td> <td>~</td>	-36.9				~
46.9 76.9 76.9 76.9 .86.9	-46.9				John market
76.9	-56.9				
Mode Tree Tree 1 N 1 f 2.479 670 GHz -23.11 dBm 2 N 1 f 2.479 670 GHz -23.09 dBm 3 N 1 f 2.479 670 GHz -23.09 dBm 3 N 1 f 2.479 670 GHz -23.09 dBm 4 5 6 -16.86 dBm -16.86 dBm 9 9 -16.86 dBm -16.86 dBm	-66.9				
36.9 X Y FUNCTION Span 2.000 MJ #Res BW 100 kHz #VBW 300 kHz Sweep 1.000 ms (1001 p) 1 N 1 f 2.479 670 GHz -23.11 dBm 2 N 1 f 2.480 378 GHz -23.09 dBm 3 N 1 f 2.479 762 GHz -16.86 dBm 4 - - - - 5 - - - - 6 - - - - 9 - - - - 10 - - - - 11 - - - -					
Center 2.480000 GHz #Res BW 100 kHz X #VBW 300 kHz Span 2.000 M Sweep 1.000 ms (1001 p 1 N 1 f 2.479 670 GHz -23.11 dBm 2 N 1 f 2.479 670 GHz -23.11 dBm 3 N 1 f 2.479 762 GHz -16.86 dBm 4 6 6 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10			0		
#Res BW 100 kHz #VBW 300 kHz Sweep 1.000 ms (1001 p Image: Imag	-96.9				
1 N 1 f 2.479 670 GHz -23.11 dBm 2 N 1 f 2.480 378 GHz -23.09 dBm 3 N 1 f 2.479 762 GHz -16.86 dBm 4 - - -16.86 dBm -16.86 dBm 5 - - - - 6 - - - - - 9 - - - - - 10 - - - - - 10 - - - - -		#VBW 30	0 kHz	Sweep	Span 2.000 MHz 1.000 ms (1001 pts)
2 N 1 f 2.480 378 GHz -23.09 dBm 3 N 1 f 2.479 762 GHz -16.86 dBm 4 5 6 7 7 8 9 9 9 10 11 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			FUNCTION	JNCTION WIDTH FUN	CTION VALUE
4 5 6 7 7 8 9 9 10 11	2 N 1 f 2.480 37	8 GHz -23.09 dBm			
10 11 <		2 GHz -16.86 dBm			
10 11 <	5				=
10 11 <	7 8				
11 · · · · · · · · · · · · · · · · · ·	9				
			m		
MSG STATUS	MSG			STATUS	

OCB,1M_PHY,Highest

5. CONDUCTED OUTPUT POWER

5.1 LIMIT

FCC Part 15 Subpart C					
Section Test Item Limit Frequency Range					
15.247(b)(3)	Peak output power	Power <1W(30dBm)	2400-2483.5		

5.2 TEST PROCEDURE

- (1) The EUT was directly connected to the Power sensor and antenna output port as show in The block diagram adove.
- (2) The EUT was set to continuously transmitting in the max power during the test.

5.3 TEST SETUP

5.5 TEST RESULTS

TestMode	Channel (MHz)	Result (dBm)	Limit (dBm)	Verdict
Lowest	2402MHz	3.36	30	Pass
Middle	2440MHz	2.90	30	Pass
Highest	2480MHz	2.88	30	Pass

6. BAND EDGE AND SPURIOUS(CONDUCTED)

6.1 LIMIT

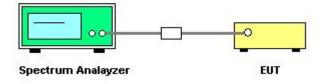
In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 30dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

6.2 TEST PROCEDURE

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

(2) Establish a reference level by using the following procedure:

Center frequency	DTS Channel center
	frequency
RBW:	100kHz
VBW:	300kHz
Span	1.5times the DTS bandwidth
Detector Mode:	Peak
Sweep time:	auto
Trace mode	Max hold


(3) Establish Allow the trace to stabilize, use the peak marker function to determine the maximum peak power level to establish the reference level.

(4) Set the spectrum analyzer as follows:

RBW:	100kHz
VBW:	300kHz
Span	Encompass frequency range to be
	measured
Number of measurement points	≥span/RBW
Number of measurement points Detector Mode:	≥span/RBW Peak
•	

(5) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude of all unwanted emissions outside of the authorized frequency band

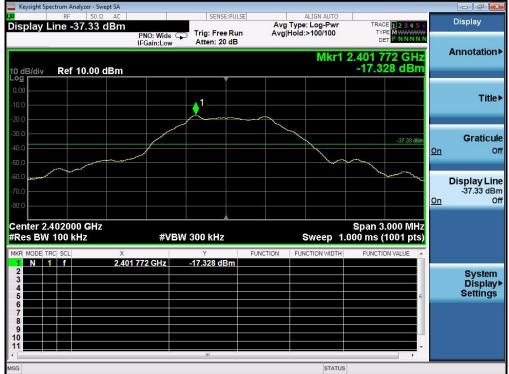
6.3 TEST SETUP

6.4 TEST RESULTS

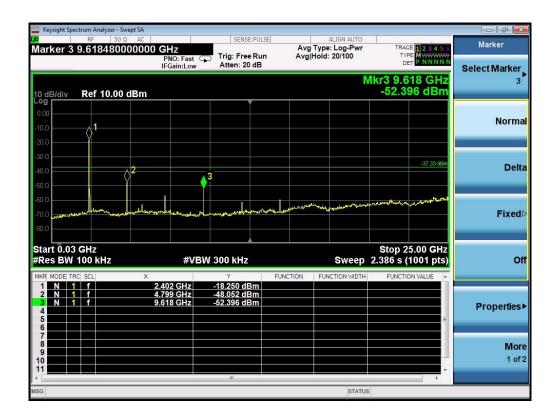
Eut set mode	CH or Frequency	Result	
GFSK	CH0	Pass	
Gron	CH39	Pass	

6.5 Original test data

CH0 2402MHZ


	50 Ω AC CORREC	SENSE:PULSE		ALIGN AUTO Avg Type: Log-Pwi	TRACE	2245
center Freq 2.3): Fast 😱 Trig: Fro in:Low #Atten:	ee Run 36 dB	Avg Type: Log-Pwi	TYPE M	PPPP
	fset 0.5 dB 3.58 dBm				Mkr2 2.399 90 -53.33	GH dBn
13.6						
23.6						
33.6						-33.58 dB
43.6						
53.6 manon bank	a printer by a market property and the	and hand and the Many many	- Andrew Strate And	menter 2 hard the	wharmore wanted where an all the	low many
53.6						
73.6						
33.6						
93.6	<u> </u>				8	
tart 2.30000 GH			· · · · · ·		Stop 2.4500	0 GH
Res BW 100 kH	z	#VBW 300 kH	Iz	S	weep 14.40 ms (100	01 pts
KR MODE TRC SCL	x 2.394 95 GHz 2.399 90 GHz	-50.29 dBm -53.33 dBm	UNCTION FUN	ICTION WIDTH	FUNCTION VALUE	
1 N 1 f 2 N 1 f 3						
2 N 1 f 3 4 5						
2 N 1 f 3 4 5 6 7						
2 N 1 f 3 4 5 6 7 8 9						
2 N 1 f 3 4 5 6 7 8						

CH39 2480MHZ


		lyzer - Swept SA						
Center	RF Freq 2.5	50 Ω AC CORREC 505000000 GHz IF1 IF1	NO: Fast Triş Gain:Low #At	se g: Free Run ten: 30 dB	ALIGN AUTO Avg Type:	Log-Pwr	TI	RACE 1 2 3 4 5 6 TYPE M WWWW DET P P P P P
10 dB/div Log		fset 0.5 dB 6.88 dBm				1	Mkr2 2.50 -54	2 15 GHz 4.50 dBm
-16.9			1					
-26.9 -36.9	92							-36.88 dBm
-46.9		www.m.t.		2 ²	we have many marshare	Liking a second	and the second	and the second second
-66.9	ka ookeykette	en proteinen Albriden under Hein Unseine besten an Andreas						
-76.9								
-96.9	8						8	
	3000 GI V 100 kH		#VBW 30	0 kHz		Swee	Stop 2. p 14.40 ms	58000 GHz (1001 pts)
MKR MODE 1 N 2 N	TRC SCL 1 f 1 f	x 2.483 55 GHz 2.502 15 GHz	-58.70 dBm -54.50 dBm	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	^
3 4	1 1	2.002 10 GHZ	-54.50 aBm					
5 6 7								E
8 9 10								
11				m				
ISG					STATUS			

Spurious emissions

Low 2402MHz 0.3GHz-25GHz

Title▶

Off

Display Line -36.21 dBm Off

System Display▶ Settings

<u>On</u>

<u>On</u>

Span 3.000 MHz Sweep 1.000 ms (1001 pts)

FUNCTION

0 dB/div Log

Center 2.440000 GHz #Res BW 100 kHz

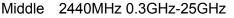
N 1 f

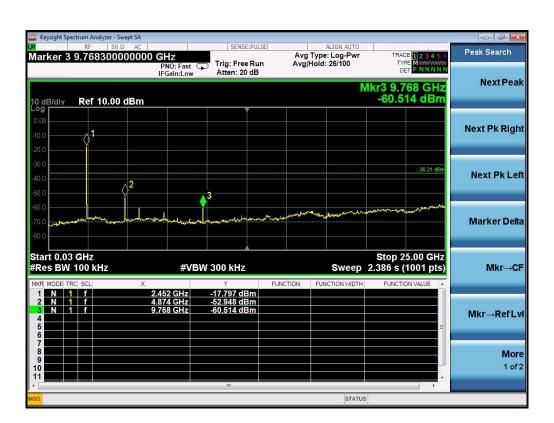
10

Page 25 of 39

#VBW 300 kHz

-16.208 dBm


2.439 769 GHz


Keysight Spectrum Analyzer - Swept SA Avg Type: Log-Pwr Avg|Hold:>100/100 Display TRACE 1 2 3 4 5 TYPE MWWWW DET P NNNN Display Line -36.21 dBm Trig: Free Run Atten: 20 dB PNO: Wide 😱 IFGain:Low **Annotation** Mkr1 2.439 769 GHz -16.208 dBm Ref 10.00 dBm 1 Graticule -36.21 dB

FUNCTION

FUNCTION WIDTH

STATUS

High 2480MHz 0.3GHz-25GHz

Page 26 of 39

7. POWER SPECTRAL DENSITY

7.1 LIMIT

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

7.2 TEST PROCEDURE

- (1) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (2) Set the spectrum analyzer as follows:

DTS Channel center frequency
3 kHz ≤ RBW ≤ 100 kHz
≥ 3RBW
1.5 times the DTS bandwidth
Peak
auto
Max hold

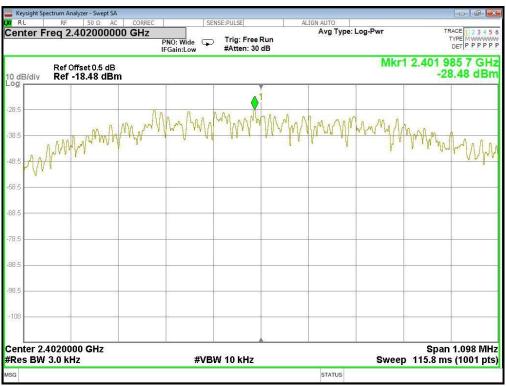
- (3) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude level within the RBW
- (4) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.3 TEST SETUP

7.4 TEST RESULTS

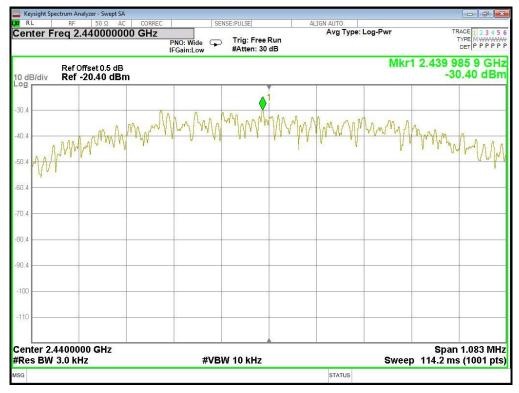
TestMode	Channel (MHz)	Result (dBm/3KHz)	Limit (dBm/3KHz)	Verdict
GFSK	2402MHz	-28.48	8	Pass
GFSK	2440MHz	-30.40	8	Pass
GFSK	2480MHz	-31.45	8	Pass

 Flux Compliance Service Laboratory


 Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan

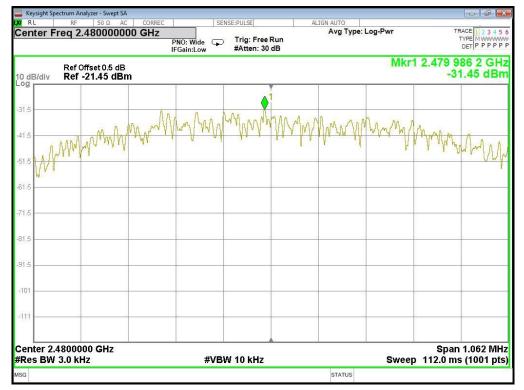
 Tel: 769-27280901
 Fax:769-27280901

 http://www.FCS-lab.com



7.5 original test data

GFSK-2402MHz


GFSK-2440MHz

Page 29 of 39

GFSK-2480MHz

8. RADIATED EMISSION MEASUREMENT

8.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

	· · · · · · · · · · · · · · · · · · ·	/
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)		
	PEAK AVERAGE		
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/AV		
Start Frequency	1000 MHz(Peak/AV)		
Stop Frequency	10th carrier hamonic(Peak/AV)		
RB / VB (emission in restricted			
band)	PK=1MHz / 1MHz, AV=1 MHz /10 Hz		

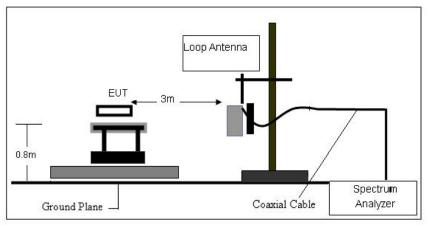
For Band edge

Setting
Peak/AV
Lower Band Edge: 2300 to 2403 MHz
Upper Band Edge: 2479 to 2500 MHz
PK=1MHz / 1MHz, AV=1 MHz / 10 Hz

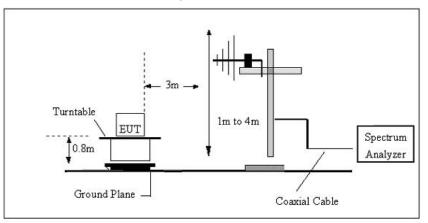
Receiver Parameter	Setting			
Attenuation	Auto			
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV			
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP			
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV			
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP			
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP			

8.2 TEST PROCEDURE

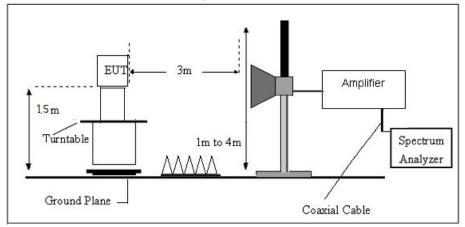
- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz,and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters (above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then QuasiPeak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:


Both horizontal and vertical antenna polarities were tested

and performed pretest to three orthogonal axis. The worst case emissions were reported



8.3 TESTSETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

 Flux Compliance Service Laboratory

 Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan

 Tel: 769-27280901
 Fax: Fax: 769-27280901

 http://www.FCS-lab.com

8.4. TEST RESULTS

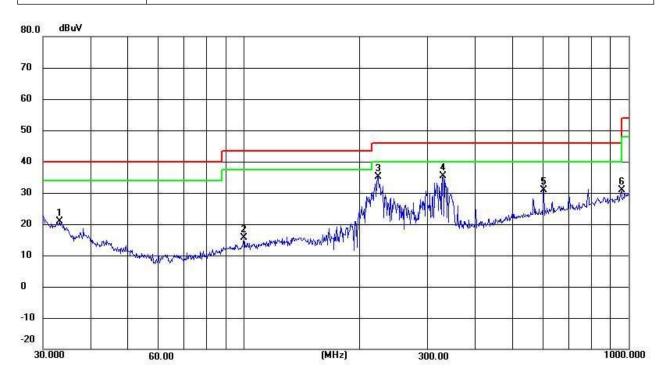
(9KHz-30MHz)

Temperature:	22.7℃	Relative Humidity:	61%
Test Voltage:	DC 5V	Test Mode:	GFSK

Freq.	Reading	Limit	Margin	State	Test Result
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	Test Result
					PASS
					PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

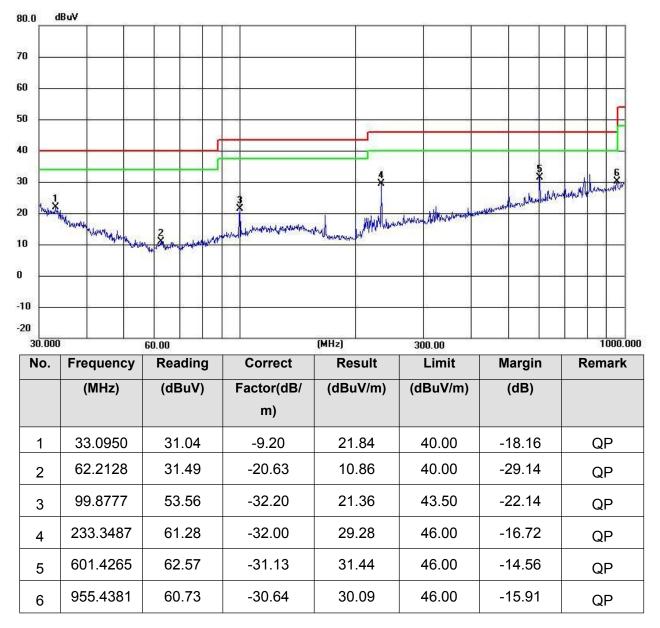

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits (dBuv) + distance extrapolation factor.

9. RADIATED EMISSION (30MHZ-1000MHZ)

Temperature:	24.7°C	Relative Humidity:	61%
Test Voltage:	DC 3.7V	Phase:	Horizontal
Test Mode:	GFSK		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/	(dBuV/m)	(dBuV/m)	(dB)	
			m)				
1	33.2112	30.22	-9.27	20.95	40.00	-19.05	QP
2	99.8777	47.71	-32.20	15.51	43.50	-27.99	QP
3	222.9502	67.19	-32.02	35.17	46.00	-10.83	QP
4	329.0390	67.22	-31.81	35.41	46.00	-10.59	QP
5	601.4265	62.06	-31.13	30.93	46.00	-15.07	QP
6	958.7943	61.54	-30.64	30.90	46.00	-15.10	QP


Note: 1. Margin = Result (Result = Reading + Factor)-Limit

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

Temperature:	22.7°C	Relative Humidity:	61%
Test Voltage:	DC 3.7V	Phase:	Vertical
Test Mode:	GFSK		

Note: 1. Margin = Result (Result = Reading + Factor)-Limit

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

■ 9.1 RADIATED EMISSION ABOVE 1GHZ

Low CH (GFSK)

Peak value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	35.74	31.78	8.60	32.09	44.03	74.00	-29.97	Vertical
7206.00	30.80	36.15	11.65	32.00	46.60	74.00	-27.40	Vertical
9608.00	30.55	37.95	14.14	31.62	51.02	74.00	-22.98	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertica
4804.00	39.71	31.78	8.60	32.09	48.00	74.00	-26.00	Horizontal
7206.00	32.41	36.15	11.65	32.00	48.21	74.00	-25.79	Horizontal
9608.00	29.82	37.95	14.14	31.62	50.29	74.00	-23.71	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	24.85	31.78	8.60	32.09	33.14	54.00	-20.86	Vertical
7206.00	19.66	36.15	11.65	32.00	35.46	54.00	-18.54	Vertical
9608.00	18.83	37.95	14.14	31.62	39.30	54.00	-14.70	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertica
4804.00	28.91	31.78	8.60	32.09	37.20	54.00	-16.80	Horizontal
7206.00	21.73	36.15	11.65	32.00	37.53	54.00	-16.47	Horizontal
9608.00	18.43	37.95	14.14	31.62	38.90	54.00	-15.10	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

Middle CH (GFSK)

Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	po l arization
4880.00	35.91	31.85	8.67	32.12	44.31	74.00	-29.69	Vertical
7320.00	30.90	36.37	11.72	31.89	47.10	74.00	-26.90	Vertical
9760.00	30.64	38.35	14.25	31.62	51.62	74.00	-22.38	Vertical
12200.00	*					74.00		Vertical
14640.00	*	5				74.00		Vertica
4880.00	39.91	31.85	8.67	32.12	48.31	74.00	-25.69	Horizonta
7320.00	32.54	36.37	11.72	31.89	48.74	74.00	-25.26	Horizontal
9760.00	29.93	38.35	14.25	31.62	50.91	74.00	-23.09	Horizontal
12200.00	*					74.00		Horizonta
14640.00	*					74.00		Horizonta
Average va	ue:							
-	Read	Antenna	Cable	Preamp	10 N		Over	

Antenna Preamp Read Cable Over Frequency Leve Limit Line polarization Leve Factor Loss Factor Limit (dBuV/m) (MHz) (dBuV/m) (dBuV) (dB/m)(dB)(dB)(dB)4880.00 24.99 32.12 33.39 54.00 20.61 Vertica 31.85 8.67 Vertica 7320.00 19.75 36.37 11.72 31.89 35.95 54.00 -18.05 14.25 Vertica 9760.00 18.92 38.35 31.62 39.90 54.00 -14.10 * Vertica 12200.00 54.00 * 14640.00 54.00 Vertica 4880.00 32.12 37.47 54.00 -16.53 Horizonta 29.07 31.85 8.67 7320.00 21.83 11.72 31.89 38.03 54.00 -15.97 Horizonta 36.37 9760.00 18.53 38.35 14.25 31.62 39.51 54.00 -14.49 Horizonta * 12200.00 54.00 Horizonta * 14640.00 54.00 Horizonta

Remarks:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

High CH (GFSK)

Peak value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	po l arization
4960.00	35.67	31.93	8.73	32.16	44.17	74.00	-29.83	Vertical
7440.00	30.74	36.59	11.79	31.78	47.34	74.00	-26.66	Vertical
9920.00	30.50	38.81	14.38	31.88	51.81	74.00	-22.19	Vertica
12400.00	*			8		74.00		Vertica
14880.00	*					74.00		Vertical
4960.00	39.62	31.93	8.73	32.16	48.12	74.00	-25.88	Horizontal
7440.00	32.35	36.59	11.79	31.78	48.95	74.00	- 25.05	Horizonta
9920.00	29.77	38.81	14.38	31.88	51.08	74.00	-22.92	Horizonta
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizonta

Average value:

Frequency (MHz)	Read Leve l (dBuV)	Antenna Factor (dB/m)	Cab l e Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	po l arization
4960.00	24.83	31.93	8.73	32.16	33.33	54.00	-20.67	Vertical
7440.00	19.64	36.59	11.79	31.78	36.24	54.00	-17.76	Vertical
9920.00	18.82	38.81	14.38	31.88	40.13	54.00	-13.87	Vertical
12400.00	*					54.00		Vertica
14880.00	*					54.00		Vertical
4960.00	28.88	31.93	8.73	32.16	37.38	54.00	-16.62	Horizontal
7440.00	21.71	36.59	11.79	31.78	38.31	54.00	-15.69	Horizontal
9920.00	18.41	38.81	14.38	31.88	39.72	54.00	-14.28	Horizonta
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remarks:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

9.2 RADIATED BAND EDGE DATA

Remark: All restriction band have been tested, and only the worst case is shown in report

Low CH (GFSK)
Peak value:

Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	35.49	27.59	5.38	30.18	38.28	74.00	-35.72	Horizontal
2390.00	51.22	27.58	5.39	30.18	54.01	74.00	-19.99	Horizonta
2400.00	51.64	27.56	5.40	30.18	54.42	74.00	-19.58	Horizontal
2310.00	35.33	27.59	5.38	30.18	38.12	74.00	-35.88	Vertica
2390.00	52.47	27.58	5.39	30.18	55.26	74.00	-18.74	Vertica
2400.00	51.77	27.56	5.40	30.18	54.55	74.00	-19.45	Vertica
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	27.71	27.59	5.38	30.18	30.50	54.00	-23.50	Horizontal
2390.00	38.51	27.58	5.39	30.18	41.30	54.00	-12.70	Horizontal
2400.00	37.53	27.56	5.40	30.18	40.31	54.00	-13.69	Horizontal
2310.00	27.13	27.59	5.38	30.18	29.92	54.00	-24.08	Vertica
2390.00	39.45	27.59	5.38	30.18	42.24	54.00	-11.76	Vertica
2400.00	39.06	27.56	5.40	30.18	41.84	54.00	-12.16	Vertical
High CH(GFS Peak va l ue:	SK)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	36.71	27.53	5.47	29.93	39.78	74.00	-34.22	Horizontal
2500.00	37.29	27.55	5.49	29.93	40.40	74.00	-33.60	Horizontal
2483.50	36.33	27.53	5.47	29.93	39.40	74.00	-34.60	Vertica
2500.00	37.59	27.55	5.49	29.93	40.70	74.00	-33.30	Vertical
Average val	ue:	~ *			8 × 5	+2 t · · · ·		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Leve l (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	30.45	27.53	5.47	29.93	33.52	54.00	-20.48	Horizontal
2500.00	29.51	27.55	5.49	29.93	32.62	54.00	-21.38	Horizontal
2483.50	31.05	27.53	5.47	29.93	34.12	54.00	-19.88	Vertica
2500.00	28.81	27.55	5.49	29.93	31.92	54.00	-22.08	Vertical
Remark:		n an				2/ 1	and a second the first of the first of the	and a second of the second sec

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

10. ANTENNA REQUIREMENT

10.1 STANDARD REQUIREMENT

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

10.2 RESULT

The antennas used for this product are spring Antenna and no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is 0.54 dBi.

*****END OF THE REPORT****